【题目】已知:如图,在ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点H,G,连接DH,BG.
(1)求证:△AEH≌△CFG;
(2)连接BE,若BE=DE,则四边形BGDH是什么特殊四边形?请说明理由.
【答案】(1)证明见解析(2)证明见解析
【解析】分析: (1)先根据平行四边形的性质可得出AD∥BC,∠DAB=∠BCD,再根据平行线的性质及补角的性质得出∠E=∠F,∠EAH=∠FCG,从而利用ASA可作出证明;
(2)根据平行四边形的性质及(1)的结论可得BH∥DG,BH=DG,则由有一组对边平行且相等的四边形是平行四边形证明四边形BHDG是平行四边形,再证明BH=DH即可得到四边形BHDG是菱形
详解:
(1)四边形ABCD是平行四边形,
∴∠DAB=∠BCD,
∴∠EAH=∠FCG,
又∵AD∥BC,
∴∠E=∠F.
∵在△AEH与△CFG中,
,
∴△AEH≌△CFG(ASA);
(2)连接BE,∵四边形ABCD是平行四边形,
∴AB∥CD且AB=CD,
又由(1)得AH=CG,∠AEH=∠F,AE=CF,
∴BH∥DG,BH=DG,,
∴四边形BHDG是平行四边形,
∵AE=CF,AD=BC,
∴DE=BF,
∵BE=DE,
∴BE=BF,
∴∠BEF=∠F,
∵∠AEH=∠F,
∴∠BEF=∠DEF,
在△BEH和△DEH中,
∵,
∴BH=DH,
∵四边形BHDG是平行四边形,
∴四边形BHDG是菱形.
点睛: 本题主要考查了平行四边形的性质、菱形的判定以及全等三角形的判定与性质,解题的关键是熟练掌握ASA和SAS证明两个三角形的判定以及菱形的判定定理,此题有一定的难度.
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数 (x<0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.
(1)求m的值;
(2)若∠DBC=∠ABC,求一次函数y=kx+b的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c图象对称轴是直线x=1,则下列结论:
①a<0,b<0,
②2a﹣b>0,
③a+b+c>0,
④a﹣b+c<0,
⑤当x>1时,y随x的增大而减小,
其中正确的是( )
A.①②③
B.②③④
C.③④⑤
D.①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P是正△ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB.
(1)求旋转角的度数;
(2)求点P与点P′之间的距离;
(3)求∠APB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+4x+3交x轴于A、B两点,(A在B左侧),交y轴于点C.
(1)求A、B、C三点的坐标.
(2)求抛物线的对称轴及顶点坐标.
(3)抛物线上是否存在点F,使△ABF的面积为1?若存在,求F点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,
(1)求证:四边形ADCE为矩形;
(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:
尺规作图:过圆外一点作图的切线。
已知:P为圆O外一点。
求作:经过点P的圆O的切线。
小敏的作法如下:
①连接OP,作线段OP的垂直平分线MN交OP于点C;
②以点C为圆心,CO的长为半径作圆交圆O于A、B两点;
③作直线PA、PB,所以直线PA、PB就是所求作的切线。
老师认为小敏的作法正确.
请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是;由此可证明直线PA,PB都是⊙O的切线,其依据是
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先化简,再求值:(1)(2x2+x﹣1)﹣[4x2+(5﹣x2+x)],其中x=﹣3.
(2)已知A=5x2﹣2xy﹣2y2,B=x2﹣2xy﹣y2,其中x=,y=﹣,求A﹣B的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com