精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点H,G,连接DH,BG.

(1)求证:△AEH≌△CFG;

(2)连接BE,若BE=DE,则四边形BGDH是什么特殊四边形?请说明理由.

【答案】(1)证明见解析(2)证明见解析

【解析】分析: (1)先根据平行四边形的性质可得出AD∥BC,∠DAB=∠BCD,再根据平行线的性质及补角的性质得出∠E=∠F,∠EAH=∠FCG,从而利用ASA可作出证明;

(2)根据平行四边形的性质及(1)的结论可得BH∥DG,BH=DG,则由有一组对边平行且相等的四边形是平行四边形证明四边形BHDG是平行四边形,再证明BH=DH即可得到四边形BHDG是菱形

详解:

(1)四边形ABCD是平行四边形,

∴∠DAB=BCD,

∴∠EAH=FCG,

又∵ADBC,

∴∠E=F.

∵在△AEH与△CFG中,

∴△AEH≌△CFG(ASA);

(2)连接BE,∵四边形ABCD是平行四边形,

ABCDAB=CD,

又由(1)得AH=CG,AEH=F,AE=CF,

BH∥DG,BH=DG,,

∴四边形BHDG是平行四边形,

AE=CF,AD=BC,

DE=BF,

BE=DE,

BE=BF,

∴∠BEF=F,

∵∠AEH=F,

∴∠BEF=DEF,

在△BEH和△DEH中,

BH=DH,

∵四边形BHDG是平行四边形,

∴四边形BHDG是菱形.

点睛: 本题主要考查了平行四边形的性质、菱形的判定以及全等三角形的判定与性质,解题的关键是熟练掌握ASASAS证明两个三角形的判定以及菱形的判定定理,此题有一定的难度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数x0)的图象交于点B(﹣2,n),过点BBCx轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.

(1)求m的值;

(2)若DBC=∠ABC,求一次函数y=kx+b的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c图象对称轴是直线x=1,则下列结论:
①a<0,b<0,
②2a﹣b>0,
③a+b+c>0,
④a﹣b+c<0,
⑤当x>1时,y随x的增大而减小,
其中正确的是(

A.①②③
B.②③④
C.③④⑤
D.①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是正△ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB.

(1)求旋转角的度数;
(2)求点P与点P′之间的距离;
(3)求∠APB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+4x+3交x轴于A、B两点,(A在B左侧),交y轴于点C.

(1)求A、B、C三点的坐标.
(2)求抛物线的对称轴及顶点坐标.
(3)抛物线上是否存在点F,使△ABF的面积为1?若存在,求F点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,AB=ACADBC,垂足为点DAN是△ABC外角∠CAM的平分线,CEAN,垂足为点E

(1)求证:四边形ADCE为矩形;

(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABN△ACM位置如图所示,AB=ACAD=AE∠1=∠2

1)求证:BD=CE

2)求证:∠M=∠N

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:
在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:
尺规作图:过圆外一点作图的切线。
已知:P为圆O外一点。
求作:经过点P的圆O的切线。

小敏的作法如下:
①连接OP,作线段OP的垂直平分线MN交OP于点C;
②以点C为圆心,CO的长为半径作圆交圆O于A、B两点;
③作直线PA、PB,所以直线PA、PB就是所求作的切线。

老师认为小敏的作法正确.
请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是;由此可证明直线PA,PB都是⊙O的切线,其依据是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值:(1)(2x2+x﹣1)﹣[4x2+(5﹣x2+x)],其中x=﹣3.

(2)已知A=5x2﹣2xy﹣2y2,B=x2﹣2xy﹣y2,其中x=,y=﹣,求A﹣B的值.

查看答案和解析>>

同步练习册答案