精英家教网 > 初中数学 > 题目详情
8.如图,已知正方形ABCD的边长为10,E(0,5),C(7,-5),一根细绳长155,从点E出发,顺时针绕在正方形上,将绳子的另一端到达的位置点F用坐标表示出来.

分析 155÷40=3…35,则绳子的另一端到达的位置点F在第二象限,到x轴的距离为3,即可求出点F的坐标.

解答 解:∵正方形ABCD的边长为10,E(0,5),C(7,-5),
∴AB上的点横坐标为-3,
∵155÷40=3…35,
∴绳子的另一端到达的位置点F在AB上,并且在第二象限,到x轴的距离为3,
∴F(-3,3).

点评 本题主要考查了点的坐标的求法,发现点的坐标规律是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.如图,点E是正方形ABCD中BC边上任意一点,以E为端点作EF=AE交∠BCD的外角平分线于F,求证:AE⊥EF.
说明:若经过反复尝试没有找到怔明方怯,交换条件与结论,将“以E为端点作EF-AE交∠BCD 的外角平分线于F,求证:AE⊥EF”,改为“以E为端点作AE⊥EP交∠BCD的外角平分线于F.求证:EF=AE”,其他不变,完成证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在⊙O中,AB,CD为圆的两条弦,CD与OA,OB分别交于点E,F,且$\widehat{AC}=\widehat{BD}$,求证:OE=OF.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,⊙O的$\widehat{CB}=2\widehat{AB}$,∠BOC=72°,则∠OAB=72°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,平面直角坐标系xOy中,点A的坐标为(-2,2),点B的坐标为(6,6),抛物线经过A、O、B三点,连结OA、OB、AB,线段AB交y轴于点E.
(1)求点E的坐标;
(2)求抛物线的函数解析式;
(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连结ON、BN,当点F在线段OB上运动时,求△BON面积的最大值,并求出此时点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在△ABC中,已知BC=4cm,AC=2$\sqrt{3}$cm,∠C=60°,在BC边上有一动点P,过P作PD∥AB,交AC于点D,试问:PB为多少时,△APD的面积最大?最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.已知:四边形AOBC是正方形,C点的坐标是$(4\sqrt{2},0)$,动点P、Q同时从O点出发,P沿折线OACB的方向运动,Q沿折线OBCA的方向运动.若P的运动速度是每秒1个单位长度,Q的运动速度是每秒2个单位长度,运动到相遇时停止,设△OPQ的面积为S,运动时间为t秒,则S与t之间的函数图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,已知AB是⊙O的直径,AB=10,点C、D在⊙O上,DC平分∠ACB,点E在⊙O外,
∠EAC=∠D.
(1)求证:AE是⊙O的切线;
(2)若BC=6,求CD的长;
(3)若∠D=60°,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.规定$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$=ad-bc,若$[\begin{array}{l}{-5}&{3{x}^{2}+5}\\{2}&{{x}^{2}-3}\end{array}]$=2,则11x2-5=-2.

查看答案和解析>>

同步练习册答案