分析 (1)根据对角线相等的平行四边形是矩形,可得答案;
(2)根据全等三角形的判定与性质,可得∠ACD与∠BCD的关系,根据平行四边形的邻角互补,可得∠ACD的度数,根据矩形的判定,可得答案.
解答 解:(1)在平行四边形ABCD中,AC=BD,求证:平行四边形ABCD是 矩形.
故答案为:AC=BD; 矩形;
(2)证明:∵四边形ABCD是平行四边形,
∴AD∥CB,AD=BC,
在△ADC和△BCD中,
∵$\left\{\begin{array}{l}{AC=BD}\\{AD=BC}\\{CD=DC}\end{array}\right.$,
∴△ADC≌△BCD,
∴∠ADC=∠BCD.
又∵AD∥CB,
∴∠ADC+∠BCD=180°,
∴∠ADC=∠BCD=90°.
∴平行四边形ABCD是矩形.
点评 本题考查了矩形的判定,利用全等三角形的判定与性质得出∠ADC=∠BCD是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | y=2x+4 | B. | y=2x-2 | C. | y=-2x-4 | D. | y=-2x-2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com