精英家教网 > 初中数学 > 题目详情

如图,梯形上、下底分别为a,b,高线长恰好等于圆的直径2r,则图中阴影部分的面积是


  1. A.
    (a+b)r-πr2
  2. B.
    abr-πr2
  3. C.
    2(a+b)r-πr2
  4. D.
    2abr-πr2
A
分析:本题的等量关系为:图中阴影部分的面积=梯形面积-圆的面积.根据等量关系直接求出结果.
解答:依题意得,
×(a+b)×2r-π×(2=(a+b)r-πr2
故选A.
点评:解决问题的关键是读懂题意,找到所求的量的等量关系.需注意梯形面积、圆的面积公式的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某社区拟筹资金2000元,计划在一块上、下底分别是10米、20米的梯形空地上种植花木(如图所示),他们想在△AMD和△BMC地带种植单价为10元/米2的太阳花,当△AMD地精英家教网带种满花后,已经花了500元,请你预算一下,若继续在△BMC地带种植同样的太阳花,资金是否够用?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄石)如图1,点C将线段AB分成两部分,如果
AC
AB
=
BC
AC
,那么称点C为线段AB的黄金分割点.某数学兴趣小组在进行课题研究时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果
S1
S
=
S2
S1
,那么称直线l为该图形的黄金分割线.
(1)如图2,在△ABC中,∠A=36°,AB=AC,∠C的平分线交AB于点D,请问点D是否是AB边上的黄金分割点,并证明你的结论;
(2)若△ABC在(1)的条件下,如图3,请问直线CD是不是△ABC的黄金分割线,并证明你的结论;
(3)如图4,在直角梯形ABCD中,∠D=∠C=90°,对角线AC、BD交于点F,延长AB、DC交于点E,连接EF交梯形上、下底于G、H两点,请问直线GH是不是直角梯形ABCD的黄金分割线,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:013

如图,梯形上、下两底长分别为39,两腰长分别为46,平行于底的直线分梯形周长相等的两部分,那么这条直线将两腰分成两条线段比是( )

A41                       B31

C43                       D32

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(湖北黄石卷)数学(带解析) 题型:解答题

如图1,点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点。某数学兴趣小组在进行课题研究时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果,那么称直线l为该图形的黄金分割线.

(1)如图2,在△ABC中,∠A=360°,AB=AC,∠C的平分线交AB于点D,请问点D是否是AB边上的黄金分割点,并证明你的结论;
(2)若△ABC在(1)的条件下,如图(3),请问直线CD是不是△ABC的黄金分割线,并证明你的结论;
(3)如图4,在直角梯形ABCD中,∠D=∠C=900,对角线AC、BD交于点F,延长AB、DC交于点E,连接EF交梯形上、下底于G、H两点,请问直线GH是不是直角梯形ABCD的黄金分割线,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(湖北黄石卷)数学(解析版) 题型:解答题

如图1,点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点。某数学兴趣小组在进行课题研究时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果,那么称直线l为该图形的黄金分割线.

(1)如图2,在△ABC中,∠A=360°,AB=AC,∠C的平分线交AB于点D,请问点D是否是AB边上的黄金分割点,并证明你的结论;

(2)若△ABC在(1)的条件下,如图(3),请问直线CD是不是△ABC的黄金分割线,并证明你的结论;

(3)如图4,在直角梯形ABCD中,∠D=∠C=900,对角线AC、BD交于点F,延长AB、DC交于点E,连接EF交梯形上、下底于G、H两点,请问直线GH是不是直角梯形ABCD的黄金分割线,并证明你的结论.

 

查看答案和解析>>

同步练习册答案