解:(1)∵NH⊥CM,∴∠OND+∠OMC=90°,
∵∠OCM+∠OMC=90°,∴∠OND=∠OCM,
∵ND=CM,∴△DON≌△MOC,
∴OD=OM;
(2)二次函数y=-x
2+4x+5的顶点P(2,9),点C的坐标为(0,5),
∴直线PC的解析式为y=2x+5,
∵PC⊥CM,∴直线MC的解析式为y=-
x+5,
∴点M的坐标为(10,0),
∴t=10;
∴当t为10时,以C、M、P为顶点的三角形是直角三角形;
设M(b,0)
CM
2=25+b
2PM
2=81+(b-2)
281+(b-2)
2+20=25+b
2b=20
M(20,0)
当t=20时以C、M、P为顶点的三角形是直角三角形.
(3)假设存在实数t,使直线NH与以AB为直径的圆相切,设圆心为E,与直线NH的切点为F,
由(1)可得△EFN∽△COM,
∴
=
,
∴
=
,
解得t=
,
∴存在实数t=
,使直线NH与以AB为直径的圆相切.
分析:(1)根据题意可证明∠OND=∠OCM,则△DON≌△MOC,则OD=OM;
(2)根据抛物线的解析式求得点C、P的坐标,从而得出直线PC的解析式,根据两直线垂直,比例系数k互为负倒数,从而得出t的值;
(3)假设存在实数t,以AB为直径的圆的半径为3,假设圆心为E,与直线NH的切点为F,可得△EFN∽△COM,根据相似三角形的性质求得t.
点评:本题是一道二次函数的综合题,考查了用待定系数法求二次函数的关系式,一次函数的关系式,是中考压轴题,难度较大.