精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC=
12
OB.
(1)试判断直线AB与⊙O的位置关系,并说明理由.
(2)若∠ACD=45°,OC=2,求弦AD的长.
分析:(1)利用题中的边的关系可求出△OAC是正三角形,然后利用角边关系又可求出∠CAB=30°,从而求出∠OAB=90°,所以判断出直线AB与⊙O相切;
(2)作AE⊥CD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD.
解答:精英家教网解:(1)直线AB是⊙O的切线,理由如下:
连接OA.
∵OC=BC,AC=
1
2
OB,
∴OC=BC=AC=OA,
∴△ACO是等边三角形,
∴∠O=∠OCA=60°,
又∵∠B=∠CAB,
∴∠B=30°,
∴∠OAB=90°.
∴AB是⊙O的切线.

(2)作AE⊥CD于点E.
∵∠O=60°,
∴∠D=30°.
∵∠ACD=45°,AC=OC=2,
∴在Rt△ACE中,CE=AE=
2

∵∠D=30°,
∴AD=2
2
点评:本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理,是基础知识要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、已知:如图,E是△ABC的边CA延长线上一点,F是AB上一点,D点在BC的延长线上.试证明∠1<∠2.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2001•东城区)已知:如图,AB是半圆O的直径,C为AB上一点,AC为半圆O′的直径,BD切半圆O′于点D,CE⊥AB交半圆O于点F.
(1)求证:BD=BE;
(2)若两圆半径的比为3:2,试判断∠EBD是直角、锐角还是钝角?并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2004•西藏)已知,如图,P是⊙O外一点,PC切⊙O于点C,割线PO交⊙O于点B、A,且AC=PC.
(1)求证:△PBC≌AOC;
(2)如果PB=2,点M在⊙O的下半圈上运动(不与A、B重合),求当△ABM的面积最大时,AC•AM的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,P是∠AOB的角平分线OC上一点.PE⊥OA于E.以P点为圆心,PE长为半径作⊙P.求证:⊙P与OB相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AD是一条直线,∠1=65°,∠2=115°.求证:BE∥CF.

查看答案和解析>>

同步练习册答案