分析 (1)设这个自然数个位之前及个位数分别为m、n,由题意m-2n是7的倍数,则21m-(m-2n)也是7的倍数,即2(10m+n)是7的倍数,由此即可解决问题.
(2)设个位之前及个位数分别为m、n,由题意不妨设m+kn=7a,则原多位数为10m+n,由题意不妨设10m+n=7b,联立可得:b=10a-$\frac{n}{7}$(10k-1),由此即可即可解决问题.
解答 解:(1)以下出现的字母均为自然数,设这个自然数个位之前及个位数分别为m、n,
依题意m-2n是7的倍数,
则21m-(m-2n)也是7的倍数,
∵20m+2n=2(10m+n),2不是7的不是,
∴10m+2n是7的倍数.
(2)设个位之前及个位数分别为m、n,
依题意不妨设m+kn=7a,
则原多位数为10m+n,
依题意不妨设10m+n=7b,
联立可得:b=10a-$\frac{n}{7}$(10k-1),
则10k-1为7倍数,分别将 k=1、2、3、4、5…15代入可知,只有k=5或12时符合条件.
点评 此题主要考查了数的整除性,利用参数是解决问题的关键,题目比较抽象,有一定难度.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com