精英家教网 > 初中数学 > 题目详情

【题目】如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF交BD于O.

(1)求证:BO=DO;

(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长.

【答案】(1)证明见解析;(2)3

【解析】

试题分析:(1)由平行四边形的性质和AAS证明△OBE≌△ODF,得出对应边相等即可;

(2)证出AE=GE,再证明DG=DO,得出OF=FG=1,即可得出结果.

试题解析:(1)证明:四边形ABCD是平行四边形,DC∥AB,∠OBE=∠ODF.

在△OBE与△ODF中,∵∠OBE=ODF,BOE=DOF,BE=DF,△OBE≌△ODF(AAS),BO=DO.

(2)解:EF⊥AB,AB∥DC,∠GEA=∠GFD=90°.∠A=45°,∠G=∠A=45°,AE=GEBD⊥AD,∠ADB=∠GDO=90°,∠GOD=∠G=45°,DG=DO,OF=FG=1,由(1)可知,OE=OF=1,GE=OE+OF+FG=3,AE=3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】二元一次方程3x+y7的正整数解有(  )组.

A. 0B. 1C. 2D. 无数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系内一点A(2,-5)关于原点对称点的坐标是(

A.5-2B.-2-5C.-25D.25

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等腰△ABC中,

1如图1,若ABC为等边三角形,D为线段BC中点,线段AD关于直线AB的对称线段为线段AE,连接DE,则∠BDE的度数为___________

2ABC为等边三角形,点D为线段BC上一动点(不与BC重合),连接AD并将线段AD绕点D逆时针旋转60°得到线段DE,连接BE.

①根据题意在图2中补全图形;

②小玉通过观察、验证,提出猜测:在点D运动的过程中,恒有CD=BE.经过与同学们的充分讨论,形成了几种证明的思路:

思路1:要证明CD=BE,只需要连接AE,并证明ADC≌△AEB

思路2:要证明CD=BE,只需要过点DDFAB,交ACF,证明ADF≌△DEB

思路3:要证明CD=BE,只需要延长CB至点G,使得BG=CD,证明ADC≌△DEG

……

请参考以上思路,帮助小玉证明CD=BE.(只需要用一种方法证明即可)

3小玉的发现启发了小明:如图3,若AB=AC=kBCAD=kDE且∠ADE=C,此时小明发现BEBDAC三者之间满足一定的的数量关系,这个数量关系是______________________.(直接给出结论无须证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为( )

A.①②
B.②③
C.①③
D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数,下面给出了求∠AGD的度数的过程,将此补充完整并在括号里填写依据.
【解】∵EF∥AD(已知)
∴∠2=
又∵∠1=∠2(已知)
∴∠1=∠3(等式性质或等量代换)
∴AB∥
∴∠BAC+=180°(
又∵∠BAC=70°(已知)
∴∠AGD=110°(等式性质)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一元二次方程x2+2=0的根的情况为( )

A.没有实根B.有两个相等的实根

C.有两个不等的实根D.有两个实根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.

(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.

(2)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,求∠AOM﹣∠NOC的度数.

查看答案和解析>>

同步练习册答案