精英家教网 > 初中数学 > 题目详情
13.如图,AC=AE,AB=AD,BC与DE相交于F,∠1=∠2=25°.
(1)说明△ABC≌△ADE;
(2)求∠BFD的度数.

分析 (1)证出∠BAC=∠DAE,由SAS证明△ABC≌△ADE即可;
(2)由全等三角形的性质得出∠B=∠D,再由对顶角相等和三角形内角和定理得出∠BFD=∠2=25°即可.

解答 (1)证明:∵∠1=∠2,
∴∠1+∠BAE=∠2+∠BAE,
即∠BAC=∠DAE,
在△ABC和△ADE中,
$\left\{\begin{array}{l}{AC=AE}&{\;}\\{∠BAC=∠DAE}&{\;}\\{AB=AD}&{\;}\end{array}\right.$,
∴△ABC≌△ADE(SAS);
(2)解:如图所示:
∵△ABC≌△ADE,
∴∠B=∠D,
∵∠3=∠4,
∴∠BFD=∠2=25°.

点评 本题考查了全等三角形的判定与性质、对顶角相等的性质以及三角形内角和定理等知识;证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.判断下列各式哪些是等式,哪些是不等式.
(1)4<5;
(2)x2+1>0;
(3)x<2x-5;
(4)x=2x+3;
(5)3a2+a;
(6)a2+2a≥4a-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知抛物线${C_1}:y=a{({x+2})^2}-3$顶点为P,与y轴交于D(0,-1).
(1)求点P的坐标及a的值;
(2)如图(1),将抛物线C1作关于原点O对称,得到抛物线记为C2,求抛物线2的解析式;
(3)如图(2),抛物线C2的顶点为Q,直线$y=-\frac{1}{2}x+1$交y轴于A,交x轴于B,与抛物线C2在对称轴右侧交于点E.现将抛物线C2沿直线AB方向平移,当抛物线C2的顶点平移到x轴上时,记平移后抛物线为C3,求抛物线C3的解析式,并求抛物线C2上 Q、E两点间的抛物线弧所扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图所示,已知点E是矩形ABCD边上一动点,沿A→D→C→B的路径移动,设点E经过的路径长为x,△ABE的面积是y,则下列能大致反映y与x的函数关系的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE,G、F分别是DC与BE的中点
(1)如图1,DG=BF(用>、<或=填空)
(2)如图2,连接AG,判断△AFG的形状,并说明理由;
(3)如图3,若∠DAB=100°,则∠AFG=40°;
(4)在图3中,若∠DAB=α,∠AFG=β,直接写出α与β的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,A,B,D三点不在同一条直线上.
(1)试判断BD与CE之间的数量关系;
(2)设BD与CE交点为F,若∠BAC=45°,求∠BFC的度数;
(3)分别取BD与CE中点M,N,连接AM,AN,试判断AM与AN之间的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,OC=OD,PC=PD,PM⊥OC于M,PN⊥OD于N,求证:PM=PN.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.柯桥苏宁电器超市销售每台进价分别为190元、160元的A、B两种型号的电风扇,下表是近两周的销售情况:
销售时段销售数量销售收入
A种型号B种型号
第一周3台5台1720元
第二周4台10台2960 元
(进价、售价均保持不变,利润=销售收入-进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备用不多于5100元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,在Rt△OAD中,∠A=90°,B,C在AD边上,且OA=AB=BC=CD,有下列结论:①△AOB∽△BOD:②△BOC∽△BDO:③△COD∽△BDO,其中成立的有②(选填序号)

查看答案和解析>>

同步练习册答案