精英家教网 > 初中数学 > 题目详情
17.某人了解到某公司员工的月工资情况如下:
员工经理副经理职员A职员B职员C职员D职员E职员F职员G
月工资/元1200080003200260024002200220022001200
在调查过程中有3位员工对月工资给出了下列3种说法:
甲:我的工资是2400元,在公司中属中等收入.
乙:我们有好几个人的工资都是2200元.
丙:我们公司员工的收入比较高,月工资有4000元.
(1)上述3种说法分别用了平均数、中位数、众数中哪一个描述数据的集中趋势?
(2)在上述3种说法中你认为那种说法可以较好地反映该公司员工月收入的一般水平?说说你的理由.

分析 (1)根据中位数、众数、平均数的定义得出答案;
(2)根据中位数及众数的意义即可得出结论.

解答 解:(1)甲所说的数据2400元,我们称之为该组数据的中位数;
乙所说的数据2200元,我们称之为该组数据的众数;
平均数为:(12000+8000+2400+2200×3+3200+2600+1200)÷9=4000;
(2)根据中位数和众数的意义即可得出:甲、乙两人的说法能较好地反映公司员工收入的一般水平.

点评 本题主要考查了中位数、众数、平均数的定义及中位数、众数的意义,难度适中.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.解方程:
(1)4x-3(20-x)=3
(2)$\frac{3x+1}{2}$-$\frac{x-1}{6}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.乘法公式的探究与应用:

(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是a2-b2(写成两数平方差的形式)
(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是a+b,宽是a-b,面积是(a+b)(a-b)(写成多项式乘法的形式).
(3)比较甲乙两图阴影部分的面积,可以得到公式(两个)
公式1:(a+b)(a-b)=a2-b2
公式2:a2-b2=(a+b)(a-b)
(4)运用你所得到的公式计算:10.3×9.7.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.解方程:x-$\frac{x-1}{2}$=$\frac{2}{3}$$-\frac{x+2}{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.先化简,再求值:($\frac{1}{a+2}$-$\frac{1}{a-2}$)÷$\frac{1}{a-2}$,其中a=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,根据下列条件解直角三角形.
(1)a=6,b=2$\sqrt{3}$;
(2)c=100,∠A=30°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.解方程
(1)2x2+5x=4
(2)2(x-2)2=(x-2)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.

(1)求抛物线的表达式;
(2)直接写出点C的坐标,并求出△ABC的面积;
(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.△ABC是等腰直角三角形,其中∠C=90°,AC=BC,D是BC上任意一点(点D与点B、C都不重合),连接AD,CF⊥AD,交AD于点E,交AB于点F,BG⊥BC交CF的延长线于点G.
(1)依题意补全图形,并写出与BG相等的线段;
(2)当点D为线段BC中点时,连接DF,求证:∠BDF=∠CDE;
(3)当点C和点F关于直线AD成轴对称时,直接写出线段CE、DE、AD三者之间的数量关系.

查看答案和解析>>

同步练习册答案