精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,△AOB的位置如图所示,已知∠AOB=90°,AO=BO,点A的坐标为(-3,1)精英家教网
(1)求点B的坐标;
(2)求过A,O,B三点的抛物线的解析式;
(3)设抛物线的对称轴为直线l,P是直线l上的一点,且△PAB的面积等于△AOB的面积,求点P的坐标.
分析:(1)作AC⊥x轴,垂足为C,作BD⊥x轴,垂足为D,易证△ACO≌△ODB,就可以求出OD,BD的长,可以得到B点的坐标.
(2)已知A,O,B三点的坐标,利用待定系数法,就可以求出抛物线的解析式.
(3)△PAB的面积等于△AOB的面积,则P点到AB的距离等于O到AB的距离,即△AOB AB边上的高线长.则过点O作AB的平行线,与抛物线的对称轴的交点,以及这点关于F的对称点就是所求的点.
解答:解:(1)作AC⊥x轴,垂足为C,作BD⊥x轴,垂足为D.
则∠ACO=∠ODB=90°,
∴∠AOC+∠OAC=90度.精英家教网
又∵∠AOB=90°,
∴∠AOC+∠BOD=90°,
∴∠OAC=∠BOD.(1分)
又∵AO=BO,
∴△ACO≌△ODB.(2分)
∴OD=AC=1,DB=OC=3.
∴点B的坐标为(1,3).(4分)

(2)因抛物线过原点,
故设所求抛物线的解析式为:y=ax2+bx.
将A(-3,1),B(1,3)两点代入得,
a+b=3
9a-3b=1

解得a=
5
6
b=
13
6
.(6分)
故所求抛物线的解析式为:y=
5
6
x2+
13
6
x
.(8分)

(3)设直线AB的方程为y=kx+b1,那么有:
-3k+b1=1
k+b1=3

解得k=
1
2
b1=
5
2

故直线AB的方程为:y=
1
2
x+
5
2

OE=
5
2
.(9分)
抛物线y=
5
6
x2+
13
6
x
的对称轴l的方程是:x=-
b
2a
=-
13
10

y=
1
2
x+
5
2
x=-
13
10

解得
x=-
13
10
y=
37
20

∴F点坐标为(-
13
10
37
20
)
.(10分)
∵l∥y轴,△PAB的面积等于△ABO的面积,
∴P点到直线AB的距离等于O点到AB的距离.
即OG=P1H=P2M(P点有两种情况).
则过原点O与AB平行的直线的解析式是y=
1
2
x.
函数y=
1
2
x与抛物线的交点坐标是即P1(-
13
10
,-
13
20
)

而P1关于F点的对称点P2(-
13
10
87
20
)
.也是满足条件的点.
点评:本题利用了全等三角形的性质,以及待定系数法求函数的解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案