精英家教网 > 初中数学 > 题目详情
如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.
(1)求证:①点F是BD中点;②CG是⊙O的切线;
(2)若FB=FE=2,求⊙O的半径.
分析:(1)①易得△AEH∽△AFB,△ACE∽△ADF;进而可得比例关系式,再根据其中的相等关系可得BF=FD,即点F是BD中点;
②连接CB、OC,根据角的关系易得∠BCF=∠CBF=90°-∠CBA=∠CAB=∠ACO,进而可得∠OCF=90°,故可得CG是⊙O的切线;
(2)根据切割线定理可得:(2+FG)2=BG×AG=2BG2,由勾股定理得:BG2=FG2-BF2,解之即可的答案.
解答:(1)证明:①∵CH⊥AB,DB⊥AB,
∴△AEH∽△AFB,△ACE∽△ADF;
EH
BF
=
AE
AF
=
CE
FD

∵HE=EC,
∴BF=FD,即点F是BD中点.

②证明:连接CB、OC;
∵AB是直径,
∴∠ACB=90°.
∵F是BD中点,
∴∠BCF=∠CBF=90°-∠CBA=∠CAB=∠ACO.
∴∠OCF=90°,
又∵OC为圆O半径,
∴CG是⊙O的切线.

(2)解:∵FC=FB=FE,
∴∠FCE=∠FEC.
∵∠FEC=∠AEH,
∴∠FCE=∠AEH,
∵∠G+∠FCE=90°,∠FAB+∠AEH=90°,
∴∠G=∠FAB,
∴FA=FG,
∵FB⊥AG,
∴AB=BG.
∵(2+FG)2=BG×AG=2BG2
∵BG2=FG2-BF2
由①、②得:FG2-4FG-12=0
∴FG1=6,FG2=-2(舍去)
∴AB=BG=4
2

∴⊙O半径为2
2
点评:本题考查切线的判定,线段等分关系的证明及线段长度的求法,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知点A是以MN为直径的半圆上一个三等分点,点B是AN的中点,点P是半径ON上的点,若⊙O的半径为1,则AP+BP的最小值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于精英家教网点D,E为CH的中点,连接AE并延长交BD于F,直线CF交直线AB于点G.
(1)求证:点F是BD的中点;
(2)求证:CG是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•德阳)如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.
(1)求证:AE•FD=AF•EC;
(2)求证:FC=FB;
(3)若FB=FE=2,求⊙O的半径r的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点A是以MN为直径的半圆上一个三等分点,点B是
AN
的中点,点P是半径ON上的点.若⊙O的半径为l,则AP+BP的最小值为(  )

查看答案和解析>>

同步练习册答案