【题目】如图,已知抛物线(为常数,且)与轴从左至右依次交于A,B两点,与轴交于点C,经过点B的直线与抛物线的另一交点为D.
(1)若点D的横坐标为-5,求抛物线的函数表达式;
(2)若在第一象限的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求的值;
(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止. 当点F的坐标是多少时,点M在整个运动过程中用时最少?
【答案】(1);(2)或;(3)F.
【解析】
试题(1)根据点在曲线上点的坐标满足方程的关系,依次求出的值得到直线的解析式、点D的纵坐标、的值得到抛物线的函数表达式.
∵BM=9,AB=6,∴BF=,BD=,AF=
(2)分△PAB∽△ABC和△PAB∽△BAC两种情况讨论即可.
(3)过点D作DH⊥y轴于点H,过点A作AG⊥DH于点G,交BD于点F,则点F即为所求,理由是,由于点M在线段AF上以每秒1个单位的速度运动,在线段FD上以每秒2个单位的速度运动,从而根据直线BD的倾斜角是30°知道,又根据垂直线段最短的性质知点F即为所求,从而根据含30°直角三角形的性质求解即可.
试题解析:(1)∵抛物线(为常数,且)与轴从左至右依次交于A,B两点,
∴A(-2,0),B(4,0).
∵点B在直线上,∴,即.
∴直线的解析式为.
∵点D在直线上,且横坐标为-5,∴纵坐标为.
∵点D在抛物线上,∴,解得.
∴抛物线的函数表达式为.
(2)易得,点C的坐标为,则.
设点P的坐标为,
分两种情况:
①若△PAB∽△ABC,则∠PAB=∠ABC,.
∴由∠PAB=∠ABC 得,即.
∴,解得.
此时点P的坐标为,,
∴由得,解得.
②若△PAB∽△BAC,则∠PAB=∠BAC,.
∴由∠PAB=∠BAC 得,即.
∴,解得.
此时点P的坐标为,,
∴由得,解得.
(3)如图,过点D作DH⊥y轴于点H,过点A作AG⊥DH于点G,交BD于点F,则点F即为所求.
∵直线BD的解析式为,∴∠FBA=∠FGD=30°.
∵AB=6,∴AF=.
∴点F的坐标为.
科目:初中数学 来源: 题型:
【题目】如图,点在直线上,点的坐标分别是,连接,将沿射线方向平移,使点O移动到点M,得到(点分别对应点).
(1)填空:m的值为_____________,点C的坐标是______________;
(2)在射线上是否存在一点N,使,如果存在,请求出点N的坐标;如果不存在,请说明理由;
(3)连接,点P是射线上一动点,请直接写出使是等腰三角形时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两幢大楼的部分截面及相关数据如图,小明在甲楼A处透过窗户E发现乙楼F处出现火灾,此时A,E,F在同一直线上.跑到一楼时,消防员正在进行喷水灭火,水流路线呈抛物线,在1.2m高的D处喷出,水流正好经过E,F. 若点B和点E、点C和F的离地高度分别相同,现消防员将水流抛物线向上平移0.4m,再向左后退了____m,恰好把水喷到F处进行灭火.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校开展拓展课程展示活动,需要制作A,B两种型号的宣传广告共20个,已知A,B两种广告牌的单价分别为40元,70元
(1)若根据活动需要,A种广告牌数量与B种广告牌数量之比为3:2,需要多少费用?
(2)若需制作A,B两种型号的宣传广告牌,其中B种型号不少于5个,制作总费用不超过1000元,则有几种制作方案?每一种制作方案的费用分别是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,C是半圆O上一点,于点Q,过点B作半圆O的切线,交OQ的延长线于点P,PA交半圆O于R,则下列等式中正确的是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.5.其中正确结论的序号是( )
A. ①④⑤ B. ①②④ C. ①③④ D. ①③⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),二次函数y=x2+bx﹣2的图象经过C点.
(1)求二次函数的解析式;
(2)平移该二次函数图象的对称轴所在直线l,若直线l恰好将△ABC的面积分为1:2两部分,请求出此时直线l与x轴的交点坐标;
(3)将△ABC以AC所在直线为对称轴翻折180°,得到△AB′C,那么在二次函数图象上是否存在点P,使△PB′C是以B′C为直角边的直角三角形?若存在,请求出P点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(问题提出)|a﹣1|+|a﹣2|+|a﹣3|+…+|a﹣2019|最小值是多少?
(阅读理解)
为了解决这个问题,我们先从最简单的情况入手.|a|的几何意义是a这个数在数轴上对应的点到原点的距离.那么|a﹣1|可以看做a这个数在数轴上对应的点到1的距离;|a﹣1|+|a﹣2|就可以看作a这个数在数轴上对应的点到1和2两个点的距离之和.下面我们结合数轴研究|a﹣1|+|a﹣2|的最小值.
我们先看a表示的点可能的3种情况,如图所示:
(1)如图①,a在1的左边,从图中很明显可以看出a到1和2的距离之和大于1.
(2)如图②,a在1和2之间(包括在1,2上),可以看出a到1和2的距离之和等于1.
(3)如图③,a在2的右边,从图中很明显可以看出a到1和2的距离之和大于1.
(问题解决)
(1)|a﹣2|+|a﹣5|的几何意义是 .请你结合数轴探究:|a﹣2|+|a﹣5|的最小值是 .
(2)|a﹣1|+|a﹣2|+|a﹣3|的几何意义是 .请你结合数轴探究:|a﹣1|+|a﹣2|+|a﹣3|的最小值是 ,并在图④的数轴上描出得到最小值时a所在的位置,由此可以得出a为 .
(3)求出|a﹣1|+|a﹣2|+|a﹣3|+|a﹣4|+|a﹣5|的最小值.
(4)求出|a﹣1|+|a﹣2|+|a﹣3|+…+|a﹣2019|的最小值.
(拓展应用)
请在图⑤的数轴上表示出a,使它到2,5的距离之和小于4,并直接写出a的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是“过圆上一点作圆的切线”的尺规作图过程.
已知:⊙O和⊙O上一点P.
求作:⊙O的切线MN,使MN经过点P.
作法:如图,
(1)作射线OP;
(2)以点P为圆心,小于OP的长为半径作弧交射线OP于A,B两点;
(3)分别以点A,B为圆心,以大于长为半径作弧,两弧交于M,N两点;
(4)作直线MN.则MN就是所求作的⊙O的切线.
请回答:该尺规作图的依据是____________________________________________________________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com