【题目】“保护好环境,拒绝冒黑烟”荆州市公交公司将淘汰一条线路上“冒黑烟”较严重的公交车,计划购买型和型两种环保节能公交车辆,若购买型公交车辆,型公交车辆,共需万元,若购买型公交车辆,型公交车辆,共需万元.
(1)求购买购买型和型公交车每辆多少钱?
(2)预计在该线路上型和型公交车每辆年均载客量分别为万人次和万人次,若该公司购买型和型公交车的总费用不超过万元,且确保这辆公交车在该线路上的年平均载客总和不少于万人次,则该公司有哪几种购车方案?
(3)在(2)的条件下,哪种购车方案总费用最少?最少费用为多少?
【答案】(1)A型公交车100万元/辆,B型公交车150元/辆;(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.
【解析】
(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;
(2)设购买A型公交车m辆,则B型公交车(10m)辆,由“购买A型和B型公交车的总费用不超过1200万元”和“10辆公交车在该线路的年均载客总和不少于680万人次”列出不等式组探讨得出答案即可;
(3)分别求出各种购车方案总费用,再根据总费用作出判断.
(1)设购买A型公交车x万元/辆,B型公交车y元/辆,
由题意,得,
解得,
答:A型公交车100万元/辆,B型公交车150元/辆;
(2)设A型公交车m辆,则B型公交车(10m)辆,
由题意,得,
解①,得m≥6;
解②,得m≤8;
解得6≤m≤8,
所以m=6,7,8,
则(10m)=4,3,2;
三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;
(3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;
②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;
③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;
故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.
科目:初中数学 来源: 题型:
【题目】(本题满分12分)如图,Rt△中, , ,点为斜边的中点,点为边上的一个动点.连结,过点作的垂线与边交于点,以为邻边作矩形.
(1)如图1,当,点在边上时,求DE和EF的长;
(2)如图2,若,设,矩形的面积为,求y关于的函数表达式;
(3)若,且点恰好落在Rt△的边上,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;
(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标;
(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店进行店庆活动,决定购进甲、乙两种纪念品,若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.
(1)购进甲乙两种纪念品每件各需要多少元?
(2)该商场决定购进甲乙两种纪念品100件,并且考虑市场需求和资金周转,用于购买这些纪念品的资金不少于6300元,同时又不能超过6430元,则该商场共有几种进货方案?
(3)若销售每件甲种纪念品可获利30元,每件乙种纪念品可获利12元,在第(2)问中的各种进货方案中,哪种方案获利最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现
如图1,△ABC和△ADE均为等边三角形,点D在边BC上,连接CE.请填空:
①∠ACE的度数为 ;
②线段AC、CD、CE之间的数量关系为 .
(2)拓展探究
如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在边BC上,连接CE.请判断∠ACE的度数及线段AC、CD、CE之间的数量关系,并说明理由.
(3)解决问题
如图3,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,AC与BD交于点E,请直接写出线段AC的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BD=DF.
(1)求证:CF=EB;
(2)试判断AB与AF,EB之间存在的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在校运会之前想了解九年级女生一分钟仰卧起坐得分情况(满分为7分),在九年级500名女生中随机抽出60名女生进行一次抽样摸底测试所得数据如下表:
(1)从表中看出所抽的学生所得的分数数据的众数是______.
A.40% B.7 C.6.5 D.5%
(2)请将下面统计图补充完整.
(3)根据上述抽查,请估计该校考试分数不低于6分的人数会有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,已知AB=24,BC=12,点E沿BC边从点B开始向点C以每秒2个单位长度的速度运动;点F沿CD边从点C开始向点D以每秒4个单位长度的速度运动,如果E、F同时出发,用t(0≤t≤6)秒表示运动的时间,当t为何值时,以点E、C、F为顶点的三角形与△ACD相似?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com