精英家教网 > 初中数学 > 题目详情
19.已知a是一个两位数,b是一个三位数,若把a写在b的左边得到一个五位数记为P,把a写在b的右边得到一个五位数记为H,则P-H等于(  )
A.9a-9bB.99a-bC.999a-9bD.999a-99b

分析 根据题意表示出P.H的值,进而得出答案.

解答 解:由题意可得:P=1000a+b,H=100b+a,
故P-H=1000a+b-(100b+a)
=999a-99b.
故选:D.

点评 此题主要考查了列代数式,正确表示出两个五位数是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图,写出平面直角坐标系中点A,B,C,D,E,F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,在平面直角坐标系中,将抛物线y=$\frac{1}{2}$x2经过平移得到抛物线y=$\frac{1}{2}$x2-2x,其对称轴与两段抛物线所围成的阴影部分的面积为4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.实验与探究:三角点阵前n行的点数计算.
如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点…第n行有n个点…容易发现,10是三角点阵中前4行的点数的和,你能发现300是前多少行的点数的和吗?
如果要用试验的方法,由上而下地逐行的相加其点数,虽然你能发现1+2+3+4+…+23+24=300.得知300是前24行的点数的和,但是这样寻找答案需我们先探求三角点阵中前n行的点数的和与n的数量关系前n行的点数的和是1+2+3+…+(n-2)+(n-1)+n,可以发现.
2×[1+2+3+…+(n-2)+(n-1)+n]=[1+2+3+…+(n-2)+(n-1)+n]+[n+(n-1)+(n-2)+…3+2+1]
把两个中括号中的第一项相加,第二项相加…第n项相加,上式等号的后边变形为这n个小括号都等于n+1,整个式子等于n(n+1),于是得到1+2+3+…+(n-2)+(n-1)+n=n(n+1)这就是说,三角点阵中前n项的点数的和是 n(n+1).
下列用一元二次方程解决上述问题
设三角点阵中前n行的点数的和为300,则有$\frac{1}{2}$n(n+1)=300整理这个方程,得:n2+n-600=0解方程得:n1=24,n2=-25,根据问题中未知数的意义确定n=24,即三角点阵中前24行的点数的和是300.请你根据上述材料回答下列问题:
(1)三角点阵中前n行的点数的和能是600吗?如果能,求出n;如果不能,试用一元二次方程说明道理.(2)如果把图中的三角点阵中各行的点数依次换成2、4、6、…、2n、…,你能探究出前n行的点数的和满足什么规律吗?这个三角点阵中前n行的点数的和能是600吗?如果能,求出n;如果不能,试用一元二次方程说明道理.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图三角板ABC中,∠BAC=90°,∠B=60°,把△ABC绕点A逆时针旋转30°得到△ADE,连接CE,则∠CED=45°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠ABC=45°,∠C=75°,求∠DAE,∠AOB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.张华同学在一次做电学实验时,记录下电流I(安)与电阻R(欧)有如表对应关系:
R2481016
I16843.22
通过描点连线,观察并求出I与R之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,在⊙O中,AB=AC,∠ABC=70°.∠BOC=80°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.平面上有四个点A、B、C、D,按照以下要求作图:
(1)连接AB并延长AB至E,使BE=AB;
(2)作射线CB;
(3)在直线BD上确定点G,使得AG+GC最短.

查看答案和解析>>

同步练习册答案