精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,在梯形ABCD中,AD∥BC,对角线AC和BD相交于点O,把梯形分成四部分,记这四部分的面积分别为S1、S2、S3、S4,则下列判断S1+S2和S3+S4的大小关系正确的是(  )
A、S1+S2>S3+S4B、S1+S2<S3+S4C、S1+S2=S3+S4D、无法判断
分析:设AD=m,BC=n,根据同底等高判断△ABC和△DBC的面积相等,然后根据三角形的相似比,把s2,s3,s4都用s1以及m,n表示出来,然后用(S1+S2)-(S3+S4)化简结果后看谁大谁小.
解答:解:设AD=m,BC=n,
∵△ABC和△DBC同底等高,
∴S△ABC=S△DBC
∴S3+S2=S4+S2,即:S3=S4
∵△AOD∽△COB,
∴S1:S2=(OD:OB)2=m2:n2
S2=
n2
m2
S1

∵S1:S3=OD:OB=m:n,
S3=
n
m
S1

(S1+S2)-(S3+S4)=S1+
n2
m2
S1-2•
n
m
S1
=S1(1+
n2
m2
-2•
n
m
)=S1(1-
n
m
)2

(1-
n
m
)
2
>0,
∴S1+S2>S3+S4
故选A.
点评:本题主要考查相似三角形的判定和性质以及三角形面积的等底等高或者等高等情况的特性,本题最后做一个差的运算来判断大小,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知如图所示,在梯形ABCD中,AD∥BC,AB=AD=DC=8,∠B=60°,连接AC.
(1)求cos∠ACB的值;
(2)若E、F分别是AB、DC的中点,连接EF,求线段EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,点M是线段BC上一定点,且MC=8.动点P从C点出发沿C?D?A?B的路线运动,运动到点B停止.在点P的运动过程中,使△PMC为等腰三角形的点P有
 
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,点M是线段BC上一定点,且MC=8.动点P从C点出发沿C→D→A→B的路线运动,运动到点B停止.在点P的运动过程中,使△PMC为等腰三角形的点P有几个?并求出相应等腰三角形的腰长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4,DO垂直于AB.则腰长是
 
.若P是梯形的对称轴L上的点,那么使△PDB为等腰三角形的点有
 
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在梯形ABCD中,AB∥DC,EF是梯形的中位线,AC交EF于G,BD交EF于H,以下说法错误的是(  )

查看答案和解析>>

同步练习册答案