【题目】已知二次函数的图象如图所示,给出以下结论:①;②;③;④,其中结论正确有( )个.
A. 2个 B. 3个 C. 4个 D. 5个
【答案】B
【解析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断即可.
①由图知:抛物线与x轴有两个不同的交点,则△=b24ac>0,
即b2>4ac,故①正确;
②抛物线开口向上,得:a>0;
抛物线的对称轴为x= =1,b=2a,故b<0;
抛物线交y轴于负半轴,得:c<0;
所以abc>0;故②正确;
③抛物线的对称轴为x==1,即b=2a,
故2a+b=0,故③错误;
④根据抛物线的对称轴方程可知:(1,0)关于对称轴的对称点是(3,0);
当x=1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;
故④正确;
所以这结论正确的有①②④.
故答案选B.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,BD为AC边上的中线.
(1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C作直线CE,使CE⊥BC于点C,交BD的延长线于点E,连接AE;
(2)求证:四边形ABCE是矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把长方形OABC放在如图所示的平面直角坐标系中,点F、E分别在边OA和AB上,若点F (0,3),点C (9,0),且∠FEC=90°,EF=EC,则点E的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某茶叶公司经销一种茶叶,每千克成本为元,市场调查发现在一段时间内,销量(千克)随销售单价(元/千克)的变化而变化,具有关系为:,物价部门规定每千克的利润不得超过元.设这种茶叶在这段时间内的销售利润(元),解答下列问题:
求与的关系式;
当取何值时,的值最大?并求出最大值;
当销售利润的值最大时,销售额也是最大吗?判断并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】等腰Rt△ACB,∠ACB=90°,AC=BC,点A、C分别在x轴、y轴的正半轴上.
(1)如图1,求证:∠BCO=∠CAO
(2)如图2,若OA=5,OC=2,求B点的坐标
(3)如图3,点C(0,3),Q、A两点均在x轴上,且S△CQA=18.分别以AC、CQ为腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,连接MN交y轴于P点,OP的长度是否发生改变?若不变,求出OP的值;若变化,求OP的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)a3aa2﹣9a2a4
(2)﹣m2(﹣m2)4(﹣m)3
(3)(﹣8)2018×(﹣0.125)2017
(4)(﹣a2b﹣2ab2+)(﹣9a)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,函数y=(k≠0,x>0)的图象经过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交函数y=(k≠0,x>0)的图象于点B.
(1)求k的值及点B的坐标
(2)在平面内存在点D,使得以A、B、C、D为顶点的四边形是平行四边形,直接写出符合条件的所有点D的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com