精英家教网 > 初中数学 > 题目详情

【题目】自开展“学生每天锻炼1小时”活动后,我市某中学根据学校实际情况,决定开设A:毽子,B:篮球,C:跑步,D:跳绳四种运动项目.为了了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图统计图.请结合图中信息解答下列问题:

(1)该校本次调查中,共调查了多少名学生?

(2)请将两个统计图补充完整;

(3)在本次调查的学生中随机抽取1人,他喜欢“跑步”的概率有多大?

【答案】(1)100名(2)见解析(3)

解:(1)该校本次一共调查了42÷42%=100名学生。

(2)喜欢跑步的人数=100-42-12-26=20(人),

喜欢跑步的人数占被调查学生数的百分比=100%=20%,

将两个统计图补充完整如下:

(3)在本次调查中随机抽取一名学生,他喜欢跑步的概率=

解析(1)结合条形统计图和扇形统计图,利用A组频数42除以A组频率42%,即可得到该校本次调查中,共调查了多少名学生。

(2)利用(1)中所求人数,减去A、B、D组的频数即可;C组频数除以100即可得到C组频率,从而将两个统计图补充完整。

(3)格局概率公式直接解答。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,扇形AOB中,OA=10,∠AOB=36°.若将此扇形绕点B顺时针旋转,得一新扇形A′O′B,其中A点在O′B上,则点O的运动路径长为cm.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(感知)如图①,ABCD,点E在直线ABCD之间,连结AE、BE,试说明∠BEE+DCE=AEC.下面给出了这道题的解题过程,请完成下面的解题过程,并填空(理由或数学式):

解:如图①,过点EEFAB

∴∠BAE=1(   

ABCD(   

CDEF(   

∴∠2=DCE

∴∠BAE+DCE=1+2(   

∴∠BAE+DCE=AEC

(探究)当点E在如图②的位置时,其他条件不变,试说明∠AEC+FGC+DCE=360°;

(应用)点E、F、G在直线ABCD之间,连结AE、EF、FGCG,其他条件不变,如图③.若∠EFG=36°,则∠BAE+AEF+FGC+DCG=   °.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算正确的是(
A.a3÷a2=a3?a2
B.
C.2a2+a2=3a4
D.(a﹣b)2=a2﹣b2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:已知△ABC为直角三角形,分别以直角边AC、BC为直径作半圆AmCBnC,以AB为直径作半圆ACB,记两个月牙形阴影部分的面积之和为S1,△ABC的面积为S2,则S1S2的大小关系为(  )

A. S1>S2 B. S1<S2 C. S1=S2 D. 不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.
(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:

销售单价(元)

x

销售量y(件)

销售玩具获得利润w(元)


(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.
(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.今年文学书和科普书的单价与去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某同学做一道数学题已知两个多项式ABB=3x2y-5xyx+7,试求AB这位同学把AB看成AB结果求出的答案为6x2y+12xy-2x-9.

(1)请你替这位同学求出的正确答案

(2)x取任意数值A-3B的值是一个定值y的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一圆形水管的截面图,已知⊙O的半径OA=13,水面宽AB=24,则水的深度CD是

查看答案和解析>>

同步练习册答案