精英家教网 > 初中数学 > 题目详情

【题目】边长为6的等边ABC中,点DE分别在ACBC边上,DEABEC=2

1)如图1,将DEC沿射线EC方向平移,得到D′E′C′,边D′E′AC的交点为M,边C′D′与∠ACC′的角平分线交于点N,当CC′多大时,四边形MCND′为菱形?并说明理由.

2)如图2,将DEC绕点C旋转∠αα360°),得到D′E′C,连接AD′BE′.边D′E′的中点为P

①在旋转过程中,AD′BE′有怎样的数量关系?并说明理由;

②连接AP,当AP最大时,求AD′的值.(结果保留根号)

【答案】(1) CC'=时,四边形MCND'是菱形,理由见解析;(2)AD'=BE',理由见解析;②

【解析】

1)先判断出四边形MCND'为平行四边形,再由菱形的性质得出CN=CM,即可求出CC'

2)①分两种情况,利用旋转的性质,即可判断出ACD≌△BCE'即可得出结论;

②先判断出点ACP三点共线,先求出CPAP,最后用勾股定理即可得出结论.

1)当CC'=时,四边形MCND'是菱形.

理由:由平移的性质得,CDC'D'DED'E'

∵△ABC是等边三角形,

∴∠B=ACB=60°

∴∠ACC'=180°-ACB=120°

CN是∠ACC'的角平分线,

∴∠D'E'C'=ACC'=60°=B

∴∠D'E'C'=NCC'

D'E'CN

∴四边形MCND'是平行四边形,

∵∠ME'C'=MCE'=60°,∠NCC'=NC'C=60°

∴△MCE'NCC'是等边三角形,

MC=CE'NC=CC'

E'C'=2

∵四边形MCND'是菱形,

CN=CM

CC'=E'C'=

2)①AD'=BE'

理由:当α≠180°时,由旋转的性质得,∠ACD'=BCE'

由(1)知,AC=BCCD'=CE'

∴△ACD'≌△BCE'

AD'=BE'

α=180°时,AD'=AC+CD'BE'=BC+CE'

即:AD'=BE'

综上可知:AD'=BE'

②如图连接CP

ACP中,由三角形三边关系得,APAC+CP

∴当点ACP三点共线时,AP最大,

如图1

D'CE'中,由PD'E的中点,得APD'E'PD'=

CP=3

AP=6+3=9

RtAPD'中,由勾股定理得,AD'=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线yx2+bx+cx轴分别交于A10),B50)两点.

1)求抛物线的解析式;

2)过C(﹣30)向x轴下方作CD垂直x轴,连接AD,已知CD4,将RtACD沿x轴向右平移m个单位,当点D落在抛物线上时,求m的值;

3)在(2)的条件下,当点D第一次落在抛物线上记为点E,点P是抛物线对称轴上一点,试探究:在抛物线上是否存在点Q,使以点BEPQ为顶点的四边形是平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知抛物线Ly=ax2+bx1.5(a0)x轴交于点A(-1,0)和点B,顶点为M,对称轴为直线lx=1.

1)直接写出点B的坐标及一元二次方程ax2+bx1.5=0的解.

2)求抛物线L的解析式及顶点M的坐标.

3)如图2,设点P是抛物线L上的一个动点,将抛物线L平移.使它的頂点移至点P,得到新抛物线L′L′与直线l相交于点N.设点P的横坐标为m

①当m=5时,PMPN有怎样的数量关系?请说明理由.

②当m为大于1的任意实数时,①中的关系式还成立吗?为什么?

③是否存在这样的点P,使PMN为等边三角形?若存在.请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P为反比例函数k0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=x2的图象于点AB.若∠AOB=135°,则k的值是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点ECD的中点,点FBC上的一点,且BF3CF,连接AEAFEF,下列结论:①△ADE∽△ECF,②∠DAE=∠EAF,③AE2ADAF,④SAEF5SECF,其中正确结论的个数是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为测量学校旗杆AB的高度,小明从旗杆正前方6米处的点C出发,沿坡度为i1的斜坡CD前进2米到达点D,在点D处放置测角仪DE,测得旗杆顶部A的仰角为30°,量得测角仪DE的高为1.5米.ABCDE在同一平面内,且旗杆和测角仪都与地面垂直.

(1)求点D的铅垂高度(结果保留根号)

(2)求旗杆AB的高度(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为弘扬中华优秀传统文化,某校开展经典诵读比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母ABC表示这三个材料),将ABC分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.

1)小礼诵读《论语》的概率是   ;(直接写出答案)

2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,在四边形ABCD中,点O,E,F,G分别是AB,BC,CD,AD的中点,连接OE,EF,FG,GO,GE.

(1)证明:四边形OEFG是平行四边形;

(2)将△OGE绕点O顺时针旋转得到△OMN,如图2所示,连接GM,EN.

OE=,OG=1,求的值;

试在四边形ABCD中添加一个条件,使GM,EN的长在旋转过程中始终相等.(不要求证明)

查看答案和解析>>

同步练习册答案