【题目】甲、乙两商场自行定价销售某一商品.
(1)甲商场将该商品提价25%后的售价为1.25元,则该商品在甲商场的原价为 元;
(2)乙商场定价有两种方案:方案将该商品提价20%;方案将该商品提价1元。某顾客发现在乙商场用60元钱购买该商品,按方案购买的件数是按方案购买的件数的2倍少10件,求该商品在乙商场的原价是多少?
(3)甲、乙两商场把该商品均按原价进行了两次价格调整.甲商场:第一次提价的百分率是a,第二次提价的百分率是b;乙商场:两次提价的百分率都是(a>0,b>0,a≠b).请问甲、乙两商场,哪个商场的提价较多?请说明理由.
【答案】(1)1元;(2)1元;(3)乙商场两次提价后价格较多,理由见解析.
【解析】分析:(1)灵活利用利润公式:售价-进价=利润,直接填空即可;
(2)设该商品在乙商场的原价为x元,根据提价后, 用60元钱按方案购买的件数是按方案购买的件数的2倍少10件,即可列方程求解.
(3)分别求出甲、乙两商场提价后的代数式,比较大小即可求解.
本题解析:
(1)1.25÷(1+25%)=1(元)
(2)设该商品在乙商场的原价为x元,则
.
经检验:x=1满足方程,符合实际.
答:该商品在乙商场的原价为1元.
(3)由于原价均为1元,则
甲商场两次提价后的价格为:(1+a)(1+b)=1+a+b+ab.
乙商场两次提价后的价格为: .
∵
故乙商场两次提价后价格较多.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A的坐标为(3,4),则A关于x轴对称的点的坐标是( )
A. (-3,4) B. (3,-4) C. (-3,-4) D. (4,3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)【证法回顾】证明:三角形中位线定理.
已知:如图1,DE是△ABC的中位线.
求证: .
证明:添加辅助线:如图1,在△ABC中,延长DE (D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF;
请继续完成证明过程:
(2)【问题解决】
如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.
(3)【拓展研究】
如图3,在四边形ABCD中,∠A=105°,∠D=120°,E为AD的中点,G、F分别为AB、CD边上的点,若AG=,DF=2,∠GEF=90°,求GF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,以下结论:①∠APO=∠DCO; ②∠APO+∠DCO=30°;③△OPC为等边三角形;④AC=AD+AP;⑤. 其中正确的有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com