精英家教网 > 初中数学 > 题目详情
12.如图,在每个小正方形的边长为1的网格中,点A、点B均为格点.
(1)AB的长等于$\sqrt{17}$;
(2)若点C是以AB为底边的等腰直角三角形的顶点,点D在边AC上,且满足S△ABD=$\frac{1}{2}$S△ABC.请在如图所示的网格中,用无刻度的直尺,画出线段BD,并简要说明点D的位置时如何找到的(不要求证明).
以AB为边连接格点,构成正方形ABEF,连接对角线AE、BF,则对角线交点即为C点,正方形相邻两边分别与网格线有两个交点G、H,且为两边中点,连接GH与AE交于D点,连接BD,BD即为所求.

分析 (1)利用勾股定理计算即可;
(2)如图,以AB为边连接格点,构成正方形ABEF,连接对角线AE、BF,则对角线交点即为C点,正方形相邻两边分别与网格线有两个交点G、H,且为两边中点,连接GH与AE交于D点,连接BD,BD即为所求.

解答 解:(1)AB=$\sqrt{{4}^{2}+{1}^{2}}$=$\sqrt{17}$;
故答案为$\sqrt{17}$
(2)如图,以AB为边连接格点,构成正方形ABEF,连接对角线AE、BF,则对角线交点即为C点,正方形相邻两边分别与网格线有两个交点G、H,且为两边中点,连接GH与AE交于D点,连接BD,BD即为所求.

故答案为:以AB为边连接格点,构成正方形ABEF,连接对角线AE、BF,则对角线交点即为C点,正方形相邻两边分别与网格线有两个交点G、H,且为两边中点,连接GH与AE交于D点,连接BD,BD即为所求.

点评 本题考查作图-应用与设计、勾股定理等知识,解题的关键是构造正方形ABEF,利用正方形的性质解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.A种饮料比B种饮料的单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,求B种饮料的单价.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,将扇形AOC围成一个圆锥的侧面.已知围成的圆锥的高为12,扇形AOC的弧长为10π,则圆锥的侧面积为65π.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图所示,AB∥CD,EC⊥CD.若∠BEC=30°,则∠ABE的度数为120°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在平面直角坐标系中,直线l1:y=-$\frac{1}{2}$x+b与直线l2:y=kx相交于点B(m,-4),且直线l1与x轴交于点A(-6,0).
(1)求k的值;
(2)过动点P(a,0)且垂于x轴的直线与l1、l2的交点分别为M、N,当点M位于点N上方时,请直接写出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.求不等式组的$\left\{\begin{array}{l}{5x-2≤3x+4}\\{2x≥\frac{x+7}{2}}\end{array}\right.$整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.已知:如图,在平面直角坐标系中,抛物线y=ax2+x的对称轴为直线x=2,顶点为A.点P为抛物线对称轴上一点,连结OA、OP.当OA⊥OP时,P点坐标为(2,-4).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知关于x的方程(a+2)x2-2ax+a=0有两个不相等的实数根x1和x2,抛物线y=x2-(2a+1)x+2a-5与x轴的两个交点分别为位于点(2,0)的两旁,若|x1|+|x2|=2$\sqrt{2}$,则a的值为-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.最近,“校园安全”受到全社会的广泛关注,重庆八中对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如下两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:

(1)扇形统计图中“基本了解”部分所对应扇形的圆心角为120度;请补全条形统计图;
(2)若达到“了解”程度的人中有1名男生2名女生,达到“不了解”的程度的人中有1名男生和1名女生,若分别从达到“了解”程度和“不了解”的人中分别抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1名男生和1名女生的概率.

查看答案和解析>>

同步练习册答案