精英家教网 > 初中数学 > 题目详情
在Rt△ABC中,BC=9,CA=12,∠ABC的平分线BD交AC与点D,DE⊥DB交AB于点E.
(1)设⊙O是△BDE的外接圆,求证:AC是⊙O的切线;
(2)设⊙O交BC于点F,连接EF,求的值.

【答案】分析:(1)要证明AD为切线,就必须证明OD和AC垂直,即∠ODC=90°;
(2)求的值,因为EF和AC平行,所以有△BEF∽△BAC,即只要求出即可.
解答:(1)证明:∵DE⊥DB,⊙O是Rt△BDE的外接圆
∴BE是⊙O的直径,点O是BE的中点,连接OD(1分)
∵∠C=90°
∴∠DBC+∠BDC=90°
又∵BD为∠ABC的平分线
∴∠ABD=∠DBC
∵OB=OD
∴∠ABD=∠ODB
∴∠ODB+∠BDC=90°
∴∠ODC=90°(4分)
又∵OD是⊙O的半径
∴AC是⊙O的切线(5分)

(2)解:设⊙O的半径为r,
在Rt△ABC中,AB2=BC2+CA2=92+122=225
∴AB=15(7分)
∵∠A=∠A,∠ADO=∠C=90°
∴△ADO∽△ACB.



∴BE=2r=,(10分)
又∵BE是⊙O的直径
∴∠BFE=90°
∴△BEF∽△BAC
(12分)
点评:此题主要考查了三角形相似的判定,以及勾股定理的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案