精英家教网 > 初中数学 > 题目详情
已知:如图,在△ABC中,∠ACB=90°,∠ABC的平分线BD交AC于点D,DE⊥DB交AB于点E,过B、D、E三点精英家教网作⊙O.
(1)求证:AC是⊙O的切线;
(2)设⊙O交BC于点F,连接EF,若BC=9,CA=12.求
EFAC
的值.
分析:(1)要想证明AC是切线,需要先连接OD,利用“经过半径的外端并且垂直于半径的直线是圆的切线”来证明AC是⊙O的切线,所以需要根据∠OBD=∠ODB,∠CBD=∠ABD,求得BC∥OD从而得到OD⊥AC;
(2)先利用△ADO∽△ACB求出半径r的值,再利用△BEF∽△BAC的相似比即可求出
EF
AC
的值为
3
4
解答:精英家教网(1)证明:连接OD,
∵DE⊥DB,∴∠BDE=90°.
∴BE是⊙O的直径.
∵OB=OD,∴∠OBD=∠ODB.
∵BD平分∠ABC,∴∠CBD=∠ABD.
∴∠CBD=∠ODB.
∴BC∥OD.
∵∠ACB=90°,
∴BC⊥AC.
∴OD⊥AC.(1分)
∵OD是⊙O的半径,
∴AC是⊙O的切线.(2分)

(2)解:设⊙O的半径为r,
在△ABC中,∠ACB=90°,BC=9,CA=12,
∴AB=15.(3分)
∵BC∥OD,
∴△ADO∽△ACB.
AO
AB
=
OD
BC

15-r
15
=
r
9

r=
45
8

BE=
45
4
,(4分)
又∵BE是⊙O的直径,
∴∠BEF=90°,
∴△BEF∽△BAC,
EF
AC
=
BE
BA
=
45
4
15
=
3
4
.(5分)
点评:主要考查了角平分线的性质和切线的判定以及相似三角形中的成比例线段的运用.要掌握角平分线的性质和切线的判定,要会灵活运用相似中的成比例线段某条线段的长度或比值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案