精英家教网 > 初中数学 > 题目详情
如图,矩形ABCD中,AB=8,BC=10,点P在矩形的边DC上由D向C运动.沿直线AP翻折△ADP,形成如下四种情形.设DP=x,△ADP和矩形重叠部分(阴影)的面积为y.

(1)如图丁,当点P运动到与C重合时,求重叠部分的面积y;
(2)如图乙,当点P运动到何处时,翻折△ADP后,点D恰好落在BC边上这时重叠部分的面积y等于多少?
(3)阅读材料:已知锐角α≠45°,tan2α是角2α的正切值,它可以用角α的正切值tanα来表示,即tan2α=
2tanα
1-(tanα)2
(α≠45°).根据上述阅读材料,求出用x表示y的解析式,并指出x的取值范围.
(提示:在图丙中可设∠DAP=a)
(1)由题意可得∠DAC=∠D′AC=∠ACE,∴AE=CE.
设AE=CE=m,则BE=10-m.
在Rt△ABE中,得m2=82+(10-m)2,∴m=8.2.
∴重叠部分的面积y=
1
2
•CE•AB=
1
2
×8.2×8=32.8(平方单位).
(另法:过E作EO⊥AC于O,由Rt△ABCRt△EOC可求得EO).

(2)由题意可得△DAP≌△D′AP,
∴AD′=AD=10,PD′=DP=x.
在Rt△ABD′中,∵AB=8,∴BD′=
102-82
=6,于是CD′=4.
在Rt△PCD′中,由x2=42+(8-x)2,得x=5.
此时y=
1
2
•AD•DP=
1
2
×10×5=25(平方单位).
表明当DP=5时,点D恰好落在BC边上,这时y=25.
(另法:由Rt△ABD′Rt△PCD′可求得DP).

(3)由(2)知,DP=5是甲,丙两种情形的分界点.
当0≤x≤5时,由图甲知y=S△ADP=S△ADP=
1
2
•AD•DP=5x.
当5<x<8时,如图丙,设∠DAP=α,则∠AEB=2α,∠FPC=2α.
在Rt△ADP中,得tanα=
DP
AD
=
x
10

根据阅读材料,即tan2α=
2tanα
1-(tanα)2
,得出tan2α=
2•
x
10
1-(
x
10
)
2
=
20x
100-x2

在Rt△ABE中,有BE=AB∕tan2α=
8
20x
100-x2
=
2(100-x2)
5x

同理,在Rt△PCF中,有CF=(8-x)tan2α=
20x(8-x)
100-x2

∴S△ABE=
1
2
•AB•BE=
1
2
×8×
2(100-x2)
5x
=
8(100-x2)
5x

S△PCF=
1
2
•PC•CF=
1
2
(8-x)×
20x(8-x)
100-x2
=
10x(8-x)2
100-x2

而S梯形ABCP=
1
2
(PC+AB)×BC=
1
2
(8-x+8)×10=80-5x.
故重叠部分的面积y=S梯形ABCP-S△ABE-S△PCF=80-5x-
8(100-x2)
5x
-
10x(8-x)2
100-x2

经验证,当x=8时,y=32.8适合上式.
综上所述,当0≤x≤5时,y=5x;当5<x≤8时,y=80-5x-
8(100-x2)
5x
-
10x(8-x)2
100-x2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:在平面直角坐标系中,抛物线y=-
1
4
x2+bx+3
交x轴于A、B两点,交y轴于点C,且对称轴为x=-2,点P(0,t)是y轴上的一个动点.

(1)求抛物线的解析式及顶点D的坐标.
(2)如图1,当0≤t≤4时,设△PAD的面积为S,求出S与t之间的函数关系式;S是否有最小值?如果有,求出S的最小值和此时t的值.
(3)如图2,当点P运动到使∠PDA=90°时,Rt△ADP与Rt△AOC是否相似?若相似,求出点P的坐标;若不相似,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=x2+bx+3与x轴交于点B(3,0),与y轴交于点A,O为坐标原点,P是二次函数y=x2+bx+3的图象上一个动点,点P的横坐标是m,且m>3,过点P作PM,PM交直线AB于M.
(1)求二次函数的解析式;
(2)若以AB为直径的⊙N恰好与直线PM相切,求此时点M的坐标;
(3)在点P的运动过程中,△APM能否为等腰三角形?若能,求出点P的坐标;若不能请说出理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-x2+bx+c与x轴的一个交点是A,与y轴的交点是B,且OA、OB(OA<OB)的长是方程x2-6x+5=0的两个实数根.
(1)求A、B两点的坐标;
(2)求出此抛物线的解析式及顶点D的坐标;
(3)求出此抛物线与x轴的另一个交点C的坐标;
(4)在直线BC上是否存在一点P,使四边形PDCO为梯形?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=4x2-7x+4与直线y=x+b相交于A、B两点.
(1)求b的取值范围;
(2)当AB=2时,求b的值;
(3)设坐标原点为O,在(2)的条件下,求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=x2+2mx+m2-4的图象与x轴的负半轴相交于A、B两点(点A在左侧),一次函数y=2x+b的图象经过点B,与y轴相交于点C.
(1)求A、B两点的坐标(可用m的代数式表示);
(2)如果?ABCD的顶点D在上述二次函数的图象上,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商场销售某种品牌的纯牛奶,已知进价为每箱40元,市场调查发现,若每箱以50元销售,平均每天可销售90箱,价格每降低1元,平均每天多售3箱,价格每升高1元,平均每天少售3箱.
①写出平均每天的销售量y与每箱售价x之间关系;
②求出商场平均每天销售这种牛奶的利润w与每箱售价x之间的关系;
③求在②的情况下当牛奶每箱售价定为多少时可达到最大利润,最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,
(1)选取合适的点作为原点,建立直角坐标系,求出抛物线的解析式;
(2)求绳子的最低点距地面的距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,AB=2AD,线段EF=10.在EF上取一点M,分别以EM、MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN矩形ABCD.令MN=x,当x为何值时,矩形EMNH的面积S有最大值,最大值是多少?

查看答案和解析>>

同步练习册答案