精英家教网 > 初中数学 > 题目详情

【题目】如图,点A(1,6)和点M(m,n)都在反比例函数y= (x>0)的图象上,

(1)k的值为
(2)当m=3,求直线AM的解析式;
(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.

【答案】
(1)6
(2)

解:将x=3代入反比例解析式y= 得:y=2,即M(3,2),

设直线AM解析式为y=ax+b,

把A与M代入得:

解得:a=﹣2,b=8,

∴直线AM解析式为y=﹣2x+8;


(3)

解:直线BP与直线AM的位置关系为平行,理由为:

当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,

∵A(1,6),M(m,n),且mn=6,即n=

∴B(0,6),P(m,0),

∴k直线AM= = = =﹣ =﹣

k直线BP= =﹣

即k直线AM=k直线BP

则BP∥AM.


【解析】解:(1)将A(1,6)代入反比例解析式得:k=6;
所以答案是:6;
【考点精析】通过灵活运用反比例函数的概念和反比例函数的图象,掌握形如y=k/x(k为常数,k≠0)的函数称为反比例函数.自变量x的取值范围是x不等于0的一切实数,函数的取值范围也是一切非零实数;反比例函数的图像属于双曲线.反比例函数的图象既是轴对称图形又是中心对称图形.有两条对称轴:直线y=x和 y=-x.对称中心是:原点即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为(
A.1
B.2
C.12 ﹣6
D.6 ﹣6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=AD,BAD=BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+bx+c,其图象抛物线交x轴于点A(1,0),B(3,0),交y轴于点C,直线l过点C,且交抛物线于另一点E(点E不与点A、B重合).
(1)求此二次函数关系式;
(2)若直线l1经过抛物线顶点D,交x轴于点F,且l1∥l,则以点C、D、E、F为顶点的四边形能否为平行四边形?若能,求出点E的坐标;若不能,请说明理由.
(3)若过点A作AG⊥x轴,交直线l于点G,连接OG、BE,试证明OG∥BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司为了解员工对“六五”普法知识的知晓情况,从本公司随机选取40名员工进行普法知识考查,对考查成绩进行统计(成绩均为整数,满分100分),并依据统计数据绘制了如下尚不完整的统计表.解答下列问题:

组别

分数段/分

频数/人数

频率

1

50.5~60.5

2

a

2

60.5~70.5

6

0.15

3

70.5~80.5

b

c

4

80.5~90.5

12

0.30

5

90.5~100.5

6

0.15

合计

40

1.00


(1)表中a= , b= , c=
(2)请补全频数分布直方图;
(3)该公司共有员工3000人,若考查成绩80分以上(不含80分)为优秀,试估计该公司员工“六五”普法知识知晓程度达到优秀的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:|﹣1|= , 22= , (﹣3)2= =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠C=90°,BC=15,斜边AB的垂直平分线与∠CAB的平分线都交BCD点,则点D到斜边AB的距离为___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学举办运动会,在1500米的项目中,参赛选手在200米的环形跑道上进行,如图记录了跑得最快的一位选手与最慢的一位选手的跑步全过程(两人都跑完了全程),其中x代表的是最快的选手全程的跑步时间,y代表的是这两位选手之间的距离,下列说不合理的是(  )

A. 出发后最快的选手与最慢的选手相遇了两次

B. 出发后最快的选手与最慢的选手第一次相遇比第二次相遇的用时短

C. 最快的选手到达终点时,最慢的选手还有415米未跑

D. 跑的最慢的选手用时4′46″

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰RtABC中,∠ABC=90°,AB=BC,D为斜边AC延长线上一点,过D点作BC的垂线交其延长线于点E,在AB的延长线上取一点F,使得BF=CE,连接EF.

(1)AB=2,BF=3,求AD的长度;

(2)GAC中点,连接GF,求证:∠AFG+∠BEF=GFE.

查看答案和解析>>

同步练习册答案