精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知在△ABC中,∠C=90°,点D是斜边AB的中点,AB=2BC,DE⊥AB交AC于E.
求证:BE平分∠ABC.
分析:由AB=2BC,点D是斜边AB的中点,可求得BD=BC,又BE=BE,可证Rt△BDE≌Rt△BCE(HL),∴∠DBE=∠EBC,∴BE平分∠ABC.
解答:证明:∵D是AB的中点,∴BD=
1
2
AB,
∵AB=2BC,∴BC=
1
2
AB,∴BD=BC,
又∵DE⊥AB,∠C=90°,∴∠C=∠BDE=90°,
又BE=BE,Rt△BDE≌Rt△BCE(HL),
∴∠DBE=∠EBC.
∴BE平分∠ABC.
点评:本题考查了角平分线的性质,三角形全等判定及性质;解题要根据题意分析边、角之间的关系,由已知能够注意到BD=BC是解决的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,已知在△ABC中,AD、AE分别是BC边上的高和中线,AB=9cm,AC=7cm,BC=8m,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,求证:PM=PN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,AB=AC,∠A=100°,CD是∠ACB的平分线.
(1)∠ADC=
60°
60°

(2)求证:BC=CD+AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为
125°
125°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,CD=CE,∠A=∠ECB,试说明CD2=AD•BE.

查看答案和解析>>

同步练习册答案