精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC的顶点的坐标分别为A(22)B(10)C(31)

(1)画出△ABC关于x轴对称的

(2)画出△ABC绕原点O逆时针旋转90°的△A2B1C2,写出点C2的坐标;

(3)(1)(2)的基础上,图中的关于哪个点中心对称.

【答案】解:(1)作图见解析;(2)作图见解析,;(3

【解析】

1)利用关于x轴的坐标特征写出A1C 1的坐标,然后描点即可;

2)利用网格特点和旋转的性质,写出点ABC的对应点A2B1C2,从而得到△A2B1C2,然后写出点C2的坐标;

3)写出的中点坐标即可.

解:

(1)如图,为所作;

(2)如图,为所作,点C2的坐标为(13)

(3)∵

的中点是

∴图中的关于点中心对称

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形纸片ABCD中,AB4cmAD8cm,按如图方式折叠,使点D与点B重合,折痕为EF,则tanBEF=(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,∠C=90°AC=BC=,将△ABC绕点A顺时针旋转60°到△的位置,连接,则的长为(

A.2B.C.D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点分别为A(﹣12)、B21)、C45).

1)以原点O为位似中心,在x轴的上方画出△A1B1C1,使△A1B1C1与△ABC位似,且相似比为2

2)△A1B1C1的面积是   平方单位.

3)点Pab)为△ABC内一点,则在△A1B1C1内的对应点P的坐标为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践:

概念理解:将△ABC 绕点 A 按逆时针方向旋转,旋转角记为 θ0°≤θ90°),并使各边长变为原来的 n 倍,得到△AB′C′,如图,我们将这种变换记为[θn],

问题解决:(2)如图,在△ABC 中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θn]得到△AB′C′,使点 BCC′在同一直线上,且四边形 ABBC′为矩形,求 θ n 的值.

拓广探索:(3)在△ABC 中,∠BAC=45°,∠ACB=90°,对△ABC作变换 得到△AB′C′,则四边形 ABB′C′为正方形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5m,两个路灯的高度都是9m,则两路灯之间的距离是_____m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠MON90°A是∠MON内部的一点,过点AABON,垂足为点BAB3厘米,OB4厘米,动点EF同时从O点出发,点E1.5厘米/秒的速度沿ON方向运动,点F2厘米/秒的速度沿OM方向运动,EFOA交于点C,连接AE,当点E到达点B时,点F随之停止运动.设运动时间为t秒(t0).

1)当t1秒时,EOFABO是否相似?请说明理由;

2)在运动过程中,不论t取何值时,总有EFOA.为什么?

3)连接AF,在运动过程中,是否存在某一时刻t,使得SAEFS四边形AEOF?若存在,请求出此时t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),在中,,点分别是边的中点,连接

1)如图①,求的值;

2)将绕点顺时针旋转到如图(2)的位置时,的大小是否发生变化,若不变化,请说明理由;若发生变化,请求出它的值;

3)将绕点顺时针旋转到直线的下方,且在同一直线上时,如图(3),求线段的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一场篮球比赛中,一名球员在关键时刻投出一球,已知球出手时离地面高2米,与篮圈中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,已知篮球运行的轨迹为抛物线,篮圈中心距离地面3.19米.

1)以地面为x轴,篮球出手时垂直地面所在直线为y轴建立平面直角坐标系,求篮球运行的抛物线轨迹的解析式;

2)通过计算,判断这个球员能否投中?

查看答案和解析>>

同步练习册答案