分析 作EH⊥AD于H,则EH=AB=4,在Rt△PBC中,BC=8,PB=PA+AB=6,利用勾股定理计算出PC=10,然后证明Rt△EFH∽Rt△CPB,再利用相似比可计算出EF.
解答 解:作EH⊥AD于H,如图2,
∴四边形ABEH为矩形,
∴EH=AB=4,
在Rt△PBC中,BC=8,PB=PA+AB=2+4=6,
∴PC=$\sqrt{P{B}^{2}+B{C}^{2}}$=10,
∵∠1+∠EFH=90°,∠P+∠2=90°,
而∠1=∠2,
∴∠EFH=∠P,
∴Rt△EFH∽Rt△CPB,
∴$\frac{EF}{PC}=\frac{EH}{BC}$,即$\frac{EF}{10}$=$\frac{4}{8}$,
∴EF=5.
点评 本题考查了折叠的性质:折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质、菱形的判定和相似三角形的判定与性质.
科目:初中数学 来源: 题型:选择题
A. | 方案一 | B. | 方案二 | C. | 方案三 | D. | 方案四 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -$\frac{2}{5}$,2 | B. | $\frac{2}{5}$,3 | C. | -$\frac{2}{5}$,5 | D. | $\frac{2}{5}$,6 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 8cm | B. | 8cm或2cm | C. | 2cm | D. | 无法确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com