精英家教网 > 初中数学 > 题目详情
5.在一个不透明的袋子装有仅颜色不同的10个小球,其中红球4个,黑球6个.
(1)先从袋子中取出m(m>1)个红球,再先从袋子中随机摸出1个球,将“摸出黑球”记为事件A.请完成下面表格:
事件A必然事件随机事件
m的值42或3
(2)当(1)中的m=2时,请直接写出事件A发生的概率.

分析 (1)当袋子中全部为黑球时,摸出黑球才是必然事件,否则就是随机事件;
(2)利用概率公式计算即可.

解答 解:(1)当袋子中全为黑球,即摸出4个红球时,摸到黑球是必然事件;
当摸出2个或3个时,摸到黑球为随机事件,
故答案为:4;2或3;
(2)m=2时,P(摸出黑球)=$\frac{6}{8}$=$\frac{3}{4}$.

点评 本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=$\frac{m}{n}$.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.如图,AB是半⊙O的直径,点D是圆弧AE上一点,且∠BDE=∠CBE,点C在AE的延长线上
(1)求证:BC是⊙O的切线;
(2)若BD平分∠ABE,延长ED、BA交于点G,若GA=AO,DE=5,求GD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.把x2y2+4加上一个单项式,使其成为多项式的完全平方式,请你写出所有符合条件的单项式±4xy、$\frac{{x}^{4}{y}^{4}}{16}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,平行四边形ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,连结EF,给出下列判断:①若△AEF是等边三角形,则∠B=60°,②若∠B=60°,则△AEF是等边三角形,③若AE=AF,则平行四边形ABCD是菱形,④若平行四边形ABCD是菱形,则AE=AF,其中,结论正确的是①③④(只需填写正确结论的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,四个全等的直角三角形纸片既可以拼成(内角不是直角)的菱形ABCD,也可以拼成正方形EFGH,则菱形ABCD面积和正方形EFGH面积之比为(  )
A.1B.$\frac{2\sqrt{5}}{5}$C.$\frac{\sqrt{3}}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.某社区为了调查居民对“物业管理”的满意度,随机抽取了部分居民作问卷调查:用“A”表示“相当满意”,“B”表示“满意”,“C”表示“比较满意”,“D”表示“不满意”,下图是工作人员根据问卷调查统计资料绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:
(1)本次问卷调查,共调查了多少人.
(2)将图(2)中“B”部分的图形补充完整.
(3)如果该社区有居民2000人,请你估计该社区居民对“物业管理”感到“不满意”的约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.二次函数y=x2-2x-c  的图象如图所示,A,B两点的纵坐标分别为-4,-3,且AB=$\sqrt{2}$.
(1)求A,B两点的坐标及二次函数的解析式;
(2)用配方法求该抛物线与x轴的两个交点坐标;
(3)如果M为x轴上一点,N为y轴上一点,以点A、B、M、N为顶点的四边形是平行四边形,求直线MN的函数表达式.
(4)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新图象,请你结合新图象回答,当直线y=x+n与这个新图象有两个公共点时,求n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.使得式子$\frac{\sqrt{x-1}}{x-2}$有意义的字母x的取值范围是x≥1且x≠2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.计算:-|-3|+$\root{3}{8}$+tan60°-20

查看答案和解析>>

同步练习册答案