精英家教网 > 初中数学 > 题目详情
精英家教网如图,菱形ABCD的对角线AC、BD相交于O,△AOB的周长为3+
3
,∠ABC=60°,则菱形ABCD的面积为
 
分析:根据∠ABC=60°可以求得∠ABO=30°,即AB=2AO,设AO=x,则AB=2x,根据勾股定理即可求得OB=
3
x,求得x的值即可求得AC,BD的长度,即可计算菱形ABCD的面积.
解答:解:菱形对角线即角平分线
∠ABC=60°可以求得∠ABO=30°,
即AB=2AO,
设AO=x,则AB=2x,
则OB=
AB2-AO2
=
3
x,
即(3+
3
)x=3+
3

即x=1,
∴菱形的对角线长为2、2
3

故菱形ABCD的面积为S=
1
2
×2×2
3
=2
3

故答案为 2
3
点评:本题考查了勾股定理在直角三角形中的运用,考查了菱形对角线互相垂直且平分一组对角的性质,本题中根据勾股定理求x的值是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,菱形ABCD的对角线AC=6,BD=8,∠ABD=α,则下列结论正确的是(  )
A、sinα=
4
5
B、cosα=
3
5
C、tanα=
4
3
D、tanα=
3
4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD的边长为6且∠DAB=60°,以点A为原点、边AB所在的直线为x轴且顶点D在第一象限建立平面直角坐标系.动点P从点D出发沿折线DCB向终点B以2单位/每秒的速度运动,同时动点Q从点A出发沿x轴负半轴以1单位/秒的速度运动,当点P到达终点时停止运动,运动时间为t,直线PQ交边AD于点E.
(1)求出经过A、D、C三点的抛物线解析式;
(2)是否存在时刻t使得PQ⊥DB,若存在请求出t值,若不存在,请说明理由;
(3)设AE长为y,试求y与t之间的函数关系式;
(4)若F、G为DC边上两点,且点DF=FG=1,试在对角线DB上找一点M、抛物线ADC对称轴上找一点N,使得四边形FMNG周长最小并求出周长最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD的边长为8cm,∠B=60°,P、Q同时从A点出发,点P以1cm/秒的速度沿A→C→B的方向运动,点Q以2cm/秒的速度沿A→B→C→D的方向运动.当点Q运动到D点时,P、Q两点同时停止运动.设P、Q运动的时间为x秒,△APQ与△ABC重叠部分的面积为ycm2(规定:点和线段是面积为0的三角形).
(1)当x=
8
8
秒时,P和Q相遇;
(2)当x=
(12-4
3
(12-4
3
秒时,△APQ是等腰直角三角形;
(3)当x=
32
3
32
3
秒时,△APQ是等边三角形;
(4)求y关于x的函数关系式,并求y的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,菱形ABCD的周长为8cm,∠ABC:∠BAD=2:1,对角线AC、BD相交于点O,求BD及AC的长.

查看答案和解析>>

同步练习册答案