A. | 1:4 | B. | 1:2 | C. | 1:3 | D. | 2:3 |
分析 根据平行四边形的性质得到AD∥BC,由平行线分线段成比例定理得到$\frac{EF}{BF}=\frac{DE}{CD}$,求得$\frac{EF}{BF}=\frac{1}{2}$,通过△DEF∽△ABF,根据相似三角形的性质即可得到结论.
解答 解:在?ABCD中,
∵AD∥BC,
∴$\frac{EF}{BF}=\frac{DE}{CD}$,
∵DE=$\frac{1}{2}$CD,
∴$\frac{EF}{BF}=\frac{1}{2}$,
∵AB∥CE,
∴△DEF∽△ABF,
∴$\frac{{S}_{△DEF}}{{S}_{△ABF}}$=($\frac{EF}{BF}$)2=($\frac{1}{2}$)2=$\frac{1}{4}$,
故选A.
点评 本题考查了相似三角形的判定和性质,平行四边形的性质,熟练掌握相似三角形的判定和性质是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com