如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).
(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;
(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2).用含S的代数式表示-,并求出当S=36时点A1的坐标;
(3)在图1中,设点D坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.
解:(1)对称轴:直线
解析式:或
顶点坐标:M(1,)
(2)由题意得
3
得:①
得: ②
把②代入①并整理得:(S>0) (事实上,更确切为S>6)
当时, 解得:(注:S>0或S>6不写不扣
分) 把代入抛物线解析式得 ∴点A1(6,3)
(3)存在
解法一:易知直线AB的解析式为,可得直线AB与对称轴的
交点E的坐标为
∴BD=5,DE=,DP=5-t,DQ= t
当∥时,
得
下面分两种情况讨论: 设直线PQ与直线AB、x轴的交点分别为点F、G
①当时,如图1-1 ∵△FQE∽△FAG ∴∠FGA=∠FEQ
∴∠DPQ=∠DEB 易得△DPQ∽△DEB ∴
∴ 得 ∴(舍去)
② 当时,如图1-2
∵△FQE∽△FAG ∴∠FAG=∠FQE
∵∠DQP=∠FQE ∠FAG=∠EBD
∴∠DQP=∠DBE 易得△DPQ∽△DEB
∴
∴, ∴
∴当秒时,使直线、直线、轴围成的三角形与直线、直线、抛物线的对称轴围成的三角形相似
(注:未求出能得到正确答案不扣分)
解法二:可将向左平移一个单位得到,再用解法一类似的方法可求得
, ,
∴
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).
(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;
(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;
(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源:第2章《二次函数》中考题集(25):2.7 最大面积是多少(解析版) 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2011年湖北省天门市麻洋中学中考数学模拟试卷(三)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com