【题目】已知:如图,C,D是直线AB上的两点,∠1+∠2=180°,DE平分∠CDF,EF∥AB.
(1)猜想:CE和DF是否平行?请说明理由;
(2)若∠DCE=130°,求∠DEF的度数.
【答案】(1)CE∥DF.理由见解析;(2)25°
【解析】
(1)由∠1+∠DCE=180°,∠1+∠2=180°,可得∠2=∠DCE,即可得到CE∥DF;
(2)由平行线的性质,可得∠CDF=50°,再由角平分线的性质得到∠CDE=25°,根据两直线平行,内错角相等即可得到结论.
(1)CE∥DF.理由如下:
∵∠1+∠2=180°,∠1+∠DCE=180°,∴∠2=∠DCE,∴CE∥DF;
(2)∵CE∥DF,∠DCE=130°,∴∠CDF=180°﹣∠DCE=180°﹣130°=50°.
∵DE平分∠CDF,∴∠CDE∠CDF=25°.
∵EF∥AB,∴∠DEF=∠CDE=25°.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,已知 AB=AC,BD 平分∠ABC,AE 为 BC 边的中线,AE、BD 相交于点 D,其中∠ADB=125°,求∠BAC 的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图①,把△ABC 纸片沿 DE 折叠,使点 A 落在四边形 BCED 的内部点 A′的位置,试说明 2∠A=∠1+∠2;
(2)如图②,若把△ABC 纸片沿 DE 折叠,使点 A 落在四边形 BCED 的外部点A′的位置,写出∠A 与∠1、∠2 之间的等量关系(无需说明理由);
(3)如图③,若把四边形 ABCD 沿 EF 折叠,使点 A、D 落在四边形BCFE 的内部点 A′、D′的位置,请你探索此时∠A、∠D、∠1 与∠2 之间的数量关系,写出你发现的结论并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,∠MON=40°,OE平分∠MON,A,B,C分别是射线OM,OE,ON上的动点(A,B,C不与点O 重合),连接AC交射线OE于点D.设∠OAC=x°.
(1)如图①,若AB∥ON,则
①∠ABO的度数是________.
②当∠BAD=∠ABD时,x=________;当∠BAD=∠BDA时,x=________.
(2)如图②,若AB⊥OM,则是否存在这样的x值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(列方程(组)及不等式解应用题)
水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)
(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?
(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.
(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?
(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料,并解答问题.
材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.
解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)
∵对应任意x,上述等式均成立,∴,∴a=2,b=1
∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.
解答:
(1)将分式 拆分成一个整式与一个分式(分子为整数)的和的形式.
(2)试说明的最小值为8.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com