精英家教网 > 初中数学 > 题目详情
4.解不等式$\frac{x+5}{2}-1<\frac{3x+2}{2}$,并把解集表示在数轴上.

分析 根据不等式性质依次去分母、移项、合并同类项、系数化为1求得不等式的解集,再将解集表示在数轴上即可.

解答 解:去分母,得:x+5-2<3x+2,
移项,得:x-3x<2-5+2,
合并同类项,得:-2x<-1,
系数化为1,得:x>$\frac{1}{2}$,
将不等式解集表示在数轴上如下:

点评 本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.某汽车制造厂开发了一种新式电动汽车,计划一年生成安装240辆.由于抽调不出足够的熟练工来完成这种新式电动汽车的安装,工厂决定招聘 一些新工人,他们经过培训后上岗,也能独立进行电动汽车的安装.生产
开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.
(1)每名熟练工和每名新工人每月分别可安装多少辆电动汽车?
(2)设工厂招聘n(0<n<10)名新工人,为使招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪些招聘方案?
(3)在(2)的条件下,工厂给每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,要求新工人的数量多于熟练工,为使工厂每月支出的工资总额W(元)尽可能少,工厂应招聘多少名新工人?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在13x13的网格图中,已知△ABC的顶点坐标分别为A(2,4)、B(3,2)、C(6,3).
(1)以点M(1,2)为位似中心,在第一象限把△ABC按相似比2:1放大,得△A'B'C',画出△ABC的位似图形;
(2)写出△A'B'C'的各顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.已知正方形ABCD中,E是BC上一点,如果DE=2,CE=1,那么正方形ABCD的面积为(  )
A.$\sqrt{3}$B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.解不等式组,并把解集在数轴上表示出来:$\left\{\begin{array}{l}-2x+1>-11\\ \frac{3x+1}{2}-1≥x\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.将直线y=2x+1的图象向上平移2个单位后所得到的直线解析式为y=2x+3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.先化简,再求值:$\frac{1}{x-2}$-$\frac{{x}^{2}-3x}{{x}^{2}-6x+9}$÷($\frac{{x}^{2}-1}{x-3}$-$\frac{1}{3-x}$),其中x满足x2-2x+4=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.解不等式组$\left\{\begin{array}{l}\frac{x-3}{2}+3≥x,①\\ 1-3({x-1})<8-x.②\end{array}\right.$,并将解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,AD∥EF,∠1=∠2,求证:AB∥DG.

查看答案和解析>>

同步练习册答案