精英家教网 > 初中数学 > 题目详情
6.在正方形网格中,我们把,每个小正方形的顶点叫做格点,连接任意两个格点的线段叫网格线段,以网格线段为边组成的图形叫做格点图形,在下列如图所示的正方形网格中,每个小正方形的边长为1.
(1)请你在图1中画一个格点图形,且该图形是边长为$\sqrt{5}$的菱形;
(2)请你在图2中用网格线段将其切割成若干个三角形和正方形,拼接成一个与其面积相等的正方形,并在图3中画出格点正方形.

分析 (1)直接利用菱形的性质结合其面积得出答案;
(2)利用正方形的性质结合正方形面积求法得出答案.

解答 解:(1)如图1所示:四边形即为菱形;

(2)如图2,3所示:即为所求答案.

点评 此题主要考查了图形的剪拼以及勾股定理,正确掌握菱形的性质是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.计算:
(1)$\frac{2}{a}\sqrt{4\;a}$+$\sqrt{\frac{1}{a}}$-2a$\sqrt{\frac{1}{a^3}}$
(2)2$\sqrt{6{x^7}}$÷4$\sqrt{\frac{x^3}{3}}$÷$\frac{1}{2}$$\sqrt{\frac{x}{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,已知抛物线y=-x2+2x经过原点O,且与直线y=x-2交于B,C两点.
(1)求抛物线的顶点A的坐标及点B,C的坐标;
(2)求证:∠ABC=90°;
(3)在直线BC上方的抛物线上是否存在点P,使△PBC的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由;
(4)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在矩形ABCD中,AO=10,AB=8,分别以OC、OA所在的直线为x轴,y轴建立平面直角坐标系,点D(3,10)、E(0,6),抛物线y=ax2+bx+c经过O,D,C三点.
(1)求抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?
(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使四边形MENC是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E,F同时由A,C两点出发,分别沿AB,CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为(  )
A.1B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.
(1)求证:GF=GC;
(2)若AB=3,AD=4,求线段GC的长.
(3)我们学过的菱形(填“平行四边形”、“矩形”或“菱形”)的中点四边形一定是矩形;矩形(填“平行四边形”、“矩形”或菱形“)的中点四边形一定是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.一个盒子中装有两个红色球,两个白色和一个蓝色球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球.
(1)利用画树状图或列表的方法求摸到的两个球的颜色能配成紫色的概率(红色和蓝色可以配成紫色);
(2)若将题干中的“记下颜色后放回”改为“记下颜色后不放回”,请直接写出摸到的两个球的颜色能配成紫色的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.已知a+b+c=0,则$\frac{\sqrt{{a}^{2}}}{a}+\frac{\sqrt{{b}^{2}}}{b}+\frac{\sqrt{{c}^{2}}}{c}$的值可能是1或-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.请你阅读小明和小红两名同学的解题过程,并回答所提出的问题.
计算:$\frac{3}{x-1}$+$\frac{x-3}{1-{x}^{2}}$
问:小明在第②步开始出错,小红在第②步开始出错(写出序号即可);请你给出正确解答过程.

查看答案和解析>>

同步练习册答案