精英家教网 > 初中数学 > 题目详情

【题目】自主学习,请阅读下列解题过程.

解一元二次不等式:x2﹣3x>0.

解:设x2﹣3x=0,解得:x1=0,x2=5.则抛物线y=x2﹣3x与x轴的交点坐标为(0,0)和(3,0).画出二次函数y=x2﹣3x的大致图象(如图所示),由图象可知:当x<0或x>3时函数图象位于x轴上方,此时y>0,即x2﹣3x>0,所以,一元二次不等式x2﹣3x>0的解集为:x<0或x>3.

通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:

(1)上述解答过程中,渗透了下列数学思想中的      .(只填序号)

①转化思想 ②分类讨论思想 ③数形结合思想 ④整体思想

(2)一元二次不等式x2﹣3x<0的解集为   

(3)用类似的方法解一元二次不等式:x2﹣3x﹣4<0的解集.

【答案】(1)①③;(2)0<x<3;(3)﹣1<x<4.

【解析】

1)把解不等式的问题转化为解一元二次方程的问题,然后画出二次函数图象后利用数形结合的思想解决问题;(2)写出抛物线在x轴下方所对应的自变量的范围;(3)设x23x40,先求出抛物线yx23xx轴的交点坐标为(﹣10)和(40).画出二次函数yx23x的大致图象(如图所示),然后写出函数图象位于x轴下方所对应的自变量的范围.

解:(1)题中解答过程中,渗透了下列数学思想中转化思想和数形结合思想;

2)当0x3时,y0,即一元二次不等式x23x0的解集为0x3

3)设x23x40,解得:x1=﹣1x24.则抛物线yx23xx轴的交点坐标为(﹣10)和(40).画出二次函数yx23x的大致图象(如图所示),由图象可知:当﹣1x4时函数图象位于x轴下方,此时y0,即x23x40

所以,一元二次不等式x23x40的解集为:﹣1x4

故答案为①③,0x3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知的直径为10cmABCD的两条弦,,则弦ABCD之间的距离是______cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“滑块铰链”是一种用于连接窗扇和窗框,使窗户能够开启和关闭的连杆式活动链接装置(如图1).图2是“滑块铰链”的平面示意图,滑轨MN安装在窗框上,悬臂DE安装在窗扇上,支点BCD始终在一条直线上,已知托臂AC20厘米,托臂BD40厘米,支点CD之间的距离是10厘米,张角∠CAB60°.

(1)求支点D到滑轨MN的距离(精确到1厘米)

(2)将滑块A向左侧移动到A′,(在移动过程中,托臂长度不变,即ACAC′,BCBC)当张角∠CA'B45°时,求滑块A向左侧移动的距离(精确到1厘米)(备用数据:1.411.732.452.65)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一个圆形喷水池的中央垂直于水面安装了一个柱形喷水装置OAO恰好在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,按如图所示建立直角坐标系,水流喷出的高度y(m)与水平距离x(m)之间的关系式可以用y=﹣x2+bx+c表示,且抛物线经过点B(2)C(2).请根据以上信息,解答下列问题;

(1)求抛物线的函数关系式,并确定喷水装置OA的高度;

(2)喷出的水流距水面的最大高度是多少米?

(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同.小明先从口袋里随机不放回地取出一个小球,记下数字为x;小红在剩下有三个小球中随机取出一个小球,记下数字y.

(1)计算由x、y确定的点(x,y)在函数y=﹣x+6图象上的概率;

(2)小明、小红约定做一个游戏,其规则是:若x、y满足xy>6,则小明胜;若x、y满足xy<6,则小红胜.这个游戏规则公平吗?说明理由;若不公平,怎样修改游戏规则才对双方公平?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线yx1x轴交于点A,与y轴交于点BBOCB′O′C′是以点A为位似中心的位似图形,且相似比为13,则点B的对应点B′的坐标为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道:选用同一长度单位量得两条线段的长度分别是,那么就说两条线段的比

,如果把表示成比值,那么,或.请完成以下问题:

四条线段中,如果________,那么这四条线段叫做成比例线段.

已知,那么________,________

如果,那么成立吗?请用两种方法说明其中的理由.

如果,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,给定锐角三角形ABC,小明希望画正方形DEFG,使DE位于边BC上,FG分别位于边ACAB上,他发现直接画图比较困难,于是他先画了一个正方形HIJK,使得点HI位于射线BC上,K位于射线BA上,而不需要求J必须位于AC上.这时他发现可以将正方形HIJK通过放大或缩小得到满足要求的正方形DEFG.

阅读以上材料,回答小明接下来研究的以下问题:

(1)如图2,给定锐角三角形ABC,画出所有长宽比为21的长方形DEFG,使DE位于边BC上,FG分别位于边ACAB上.

(2)已知三角形ABC的面积为36BC12,在第(1)问的条件下,求长方形DEFG的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,E为CD的中点,AE的垂直平分线分别交AD,BC及AB的延长线于点F,G,H,连接HE,HC,OD,连接CO并延长交AD于点M.则下列结论中:

①FG=2AO;②OD∥HE;③;④2OE2=AHDE;⑤GO+BH=HC

正确结论的个数有(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

同步练习册答案