分析 (1)利用待定系数法求出二次函数解析式即可;
(2)根据抛物线的解析式求得B点的坐标,然后根据待定系数法求得直线BC的解析式,设P(m,-$\frac{1}{2}$m+2);则Q(m,-$\frac{1}{2}$m2+$\frac{3}{2}$m+2),进而表示出PQ的长度,利用二次函数的最值求出即可.
解答 解:(1)抛物线y=-$\frac{1}{2}{x}^{2}$+mx+n与x轴交于A,B两点,与y轴交于点C,A(-1,0),C(0,2).
∴$\left\{\begin{array}{l}{-\frac{1}{2}-m+n=0}\\{n=2}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{m=\frac{3}{2}}\\{n=2}\end{array}\right.$,
故抛物线解析式为:y=-$\frac{1}{2}$x2+$\frac{3}{2}$x+2;
(2)令y=0,则-$\frac{1}{2}$x2+$\frac{3}{2}$x+2=0,解得x1=-1,x2=4,
∴B(4,0),
设直线BC的解析式为y=kx+b,
∴$\left\{\begin{array}{l}{4k+b=0}\\{b=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{k=-\frac{1}{2}}\\{b=2}\end{array}\right.$,
∴直线BC的解析式为y=-$\frac{1}{2}$x+2,
设P(m,-$\frac{1}{2}$m+2);则Q(m,-$\frac{1}{2}$m2+$\frac{3}{2}$m+2),
则PQ=(-$\frac{1}{2}$m2+$\frac{3}{2}$m+2)-(-$\frac{1}{2}$m+2)=-$\frac{1}{2}$m2+2m=-$\frac{1}{2}$(m-2) 2+2,
此时PQ的最大值为2.
点评 此题主要考查了待定系数法求一次函数的解析式,二次函数的解析式和二次函数的最值问题,求得解析式是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
编号 | ① | ② | ③ | ④ | ⑤ | ⑥ | ⑦ | ⑧ | ⑨ |
原来球队 | 72 | 72 | 77 | 77 | 78 | 80 | 86 | 86 | 92 |
现在球队 | 72 | 72 | 77 | 77 | 78 | 93 | 84 | 83 | 84 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com