精英家教网 > 初中数学 > 题目详情
12.如图,Rt△ABC中,∠ACB=90°,CM为AB边上的中线,AN⊥CM,交BC于点N,若CM=3,AN=4,则tan∠CAN的值为(  )
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 由△ACN∽△BCA,得$\frac{CN}{AC}$=$\frac{AN}{AB}$=$\frac{4}{6}$=$\frac{2}{3}$,根据三角函数定义即可解决问题.

解答 解:∵∠ACB=90°,
AM=BM,
∴CM=MB=MA=3,
∴∠B=∠MCB,
∵AN⊥CM,
∴∠CAN+∠ACM=90°,∠ACM+∠MCB=90°,
∴∠B=∠CAN,∴∠ACN=∠ACB=90°,
∴△ACN∽△BCA,
∴$\frac{CN}{AC}$=$\frac{AN}{AB}$=$\frac{4}{6}$=$\frac{2}{3}$,
∴tan∠CAN=$\frac{CN}{AC}$=$\frac{2}{3}$.
故选A.

点评 本题考查相似三角形的判定和性质、锐角三角函数的定义、直角三角形斜边中线定理等知识,解题的关键是正确寻找相似三角形,利用相似三角形的性质解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.如图,点O是圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使$\widehat{AB}$和$\widehat{AC}$都经过圆心O,则阴影部分的面积是⊙O面积的$\frac{1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在直角坐标系中,矩形OABC的顶点O是坐标原点,A,C分别在坐标轴上,点B的坐标为(4,2),M,N分别是AB,BC上的点,反比例函数y=$\frac{k}{x}$的图象经过点M,N.
(1)请用含k的式子表示出点M、N的坐标;
(2)若直线MN的解析式为y=-$\frac{1}{2}$x+3,求反比例函数的解析式;
(3)在(2)的条件下,若点P在x轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.在平面直角坐标系中,△ABC顶点坐标分别为:A(2,5)、B(-2,3)、C(0,2).线段DE的端点坐标为D(2,-3),E(6,-1).
(1)线段AB先向右平移4个单位,再向下平移6个单位与线段ED重合;
(2)将△ABC绕点P旋转180°后得到的△DEF,使AB的对应边为DE,直接写出点P的坐标,并画出△DEF;
(3)求点C在旋转过程中所经过的路径l的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次,根据年龄将大众评委分为5组,各组的人数如下:
组别ABCDE
人数5010015015050
(Ⅰ)为了调查评委对7位歌手的支持状况,现用分层抽样方法从各组中抽取若干评委,其中从B组中抽取了6人.请将其余各组抽取的人数填入下表.
组别ABCDE
人数5010015015050
抽取人数6
(Ⅱ)在(Ⅰ)中,若A,B两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.将一张长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,若这个三角形面积的最小值为4.5cm2时,则纸片的宽为3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知关于x的一元二次方程x2-(m+6)x+3m+9=0的两个实数根分别为x1,x2
(1)求证:该一元二次方程总有两个实数根;
(2)若n=x1+x2-5,判断动点P(m,n)所形成的函数图象是否经过点A(4,5),并说明理由;
(3)若两根满足x1-2x2=m,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.张明从家骑摩托车到工厂上班需30min,如果行驶速度增加10km/h,那么不到20min可到达,他原来行驶的速度xkm/h最大是多少?列不等式为$\frac{1}{3}$(x+10)>$\frac{1}{2}$x.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,等腰△ABC中,AB=AC.
(1)操作(保留作图痕迹,不写作法);
①以CA为直径作⊙O,交AB于M,交BC于N.
②过C点作⊙O的切线交AB的延长线于点P;
(2)在(1)中要求所作的图中,若BC=10,AC=13,求PC•AM的值.

查看答案和解析>>

同步练习册答案