精英家教网 > 初中数学 > 题目详情

【题目】如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为4028,则△EDF的面积为(  )

A. 12 B. 6 C. 7 D. 8

【答案】B

【解析】

过点DDH⊥ACH,根据角平分线上的点到角的两边距离相等可得DF=DH,再利用“HL”证明Rt△DEFRt△DGH全等,根据全等三角形的面积相等可得S△DEF=S△DGH,然后列式求解即可.

解:如图,过点DDH⊥ACH,

∵AD是△ABC的角平分线,DF⊥AB,
∴DF=DH,
Rt△DEFRt△DGH中,

,

∴Rt△DEF≌Rt△DGH(HL),
∴S△DEF=S△DGH
∵△ADG和△AED的面积分别为4028,
∴△EDF的面积=×(40-28)=6.
故选:B.

【点晴】

本题考查了全等三角形的性质和判定及等面积法在解题中的应用,熟练掌握相关知识是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=a1(x﹣2)2+2与y=a2(x﹣2)2﹣3的顶点分别为A,B,与x轴分别交于点O,C,D,E.若点D的坐标为(﹣1,0),则△ADE与△BOC的面积比为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC为等腰直角三角形,∠ABC=90°,AB=BC,点Ax轴的负半轴上,点By轴上的一个动点,点C在点B的上方,

(1)如图1当点A的坐标为(﹣3,0),点B的坐标为(0,1)时,求点C的坐标;

(2)设点A的坐标为(a,0),点B的坐标为(0,b).过点CCDy轴于点D,在点B运动过程中(不包含ABC的一边与坐标轴重合的情况),猜想线段OD的长与a、b的数量关系,并说明理由;

(3)在(2)的条件下如图4,当x轴平分∠BAC时,BCx轴于点E,过点作CFx轴于点F.说明此时线段CFAE的数量关系(用含a、b的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠1+2180°,∠3B

1)证明:EFAB

2)试判断∠AED与∠C的大小关系,并说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车从A地将一批物品匀速运往B地,已知甲出发0.5h后乙开始出发,如图,线段OP、MN分别表示甲、乙两车离A地的距离S(km)与时间t(h)的关系,请结合图中的信息解决如下问题:

(1)计算甲、乙两车的速度及a的值;
(2)乙车到达B地后以原速立即返回.
①在图中画出乙车在返回过程中离A地的距离S(km)与时间t(h)的函数图象;
②请问甲车在离B地多远处与返程中的乙车相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图点A(1,1),B(2,﹣3),点P为x轴上一点,当|PA﹣PB|最大时,点P的坐标为(  )

A. (﹣1,0) B. ,0) C. ,0) D. (1,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】快递公司准备购买机器人来代替人工分拣已知购买- 台甲型机器人比购买-台乙型机器人多万元;购买台甲型机器人和台乙型机器人共需万元.

(1)求甲、乙两种型号的机器人每台的价格各是多少万元;

(2)已知甲型、乙型机器人每台每小时分拣快递分别是件、件,该公司计划最多用万元购买台这两种型号的机器人.该公司该如何购买,才能使得每小时的分拣量最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ADAE分别是ABC的高和角平分线,∠B=30°,∠C=50°

1)求∠DAE的度数;

2)试写出∠DAE与∠C、∠B之间的数量关系(不必说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′

(1)补全△A′B′C′,利用网格点和直尺画图;

(2)图中ACA1C1的关系是:______

(3)画出△ABCAB边上的中线CE

(4)平移过程中,线段AC扫过的面积是_________

查看答案和解析>>

同步练习册答案