精英家教网 > 初中数学 > 题目详情
精英家教网我们已经知道,如果线段MN被点P分成线段MP和PN,且
MP
MN
=
PN
MP
,那么称线段MN被点P黄金分割,点P叫做线段MN的黄金分割点,MP与MN的比叫做黄金比.通过计算可知黄金比为
5
-1
2
.若一个矩形的短边与长边之比等于黄金比,则称这个矩形为黄金矩形.已知图中正方形ABCD的边长为1,请你以AD为短边,用尺规作一个黄金矩形,要求保留作图痕迹并简要写出作法,不要求证明.
分析:此题主要是确定矩形的长边,根据黄金比,只需保证较长的边等于较短边的
5
+1
2
即可.这里可以熟练运用勾股定理进行分析.
解答:精英家教网解:作法:(1)作AB的中点E;
(2)连接EC;
(3)在AB的延长线上截取:EF=EC;
(4)过F点作FG⊥AF交DC的延长线于点G,
则四边形AFGD就是所求作的黄金矩形.
点评:此题主要是根据勾股定理分析出
5
2
的长,用尺规完成即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网在八年级上册我们已经知道三角形的中位线具有如下性质:
三角形的中位线平行于第三边,并且等于它的一半.
如图所示,已知△ABC和下列四种说法:
①D是AB中点;②E是AC中点;③DE=
12
BC;④DE∥BC.
请你以其中的两种说法为条件(①和②不能同时作为条件),其余两种说法为结论,构造一个命题;并判定你所构造的命题是否正确.如果正确请说明理由;如果不正确,请举出反例.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)我们已经知道:在△ABC中,如果AB=AC,则∠B=∠C.下面我们继续
研究:如图①,在△ABC中,如果AB>AC,则∠B与∠C的大小关系如何?
为此,我们把AC沿∠BAC的平分线翻折,因为AB>AC,所以点C落在AB边的点D处,如图②所示,然后把纸展平,连接DE.接下来,你能推出∠B与∠C的大小关系了吗?试写出说理过程.
(2)如图③,在△ABC中,AE是角平分线,且∠C=2∠B.
求证:AB=AC+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在八年级上册我们已经知道三角形的中位线具有如下性质:
三角形的中位线平行于第三边,并且等于它的一半.
如图所示,已知△ABC和下列四种说法:
①D是AB中点;②E是AC中点;③DE=数学公式BC;④DE∥BC.
请你以其中的两种说法为条件(①和②不能同时作为条件),其余两种说法为结论,构造一个命题;并判定你所构造的命题是否正确.如果正确请说明理由;如果不正确,请举出反例.

查看答案和解析>>

同步练习册答案