精英家教网 > 初中数学 > 题目详情
精英家教网如图为菱形ABCD与正方形EFGH的重迭情形,其中E在CD上,AD与GH相交于I点,且AD∥HE.若∠A=60°,且AB=7,DE=4,HE=5,则梯形HEDI的面积为何?(  )
A、6
3
B、8
3
C、10-2
3
D、10+2
3
分析:利用菱形和正方形的性质分别求得HE和ID、DE的长,利用梯形的面积计算方法算得梯形的面积即可.
解答:精英家教网解:∵四边形ABCD为菱形且∠A=60°,
∴∠ADE=180°-60°=120°,
又∵AD∥HE
∴∠DEH=180°-120°=60°,
作DM⊥HE于M点,则△DEM为30°、60°、90°的三角形,
又DE=4
∴EM=2,DM=2
3

且四边形EFGH为正方形
∴∠H=∠I=90°,
即四边形IDMH为矩形,
∴ID=HM=5-2=3,
∴梯形HEDI面积=
(3+5)×2
3
2
=8
3

故选B.
点评:本题考查了梯形的面积的计算,解题的关键是正确地利用菱形和正方形的性质计算梯形的底和高.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图为菱形ABCD与△ABE的重迭情形,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为何?(  )
A、8B、9C、11D、12

查看答案和解析>>

科目:初中数学 来源: 题型:

如图为菱形ABCD与正方形EFGH的重叠情形,其中E在CD上,AD与GH相交于I点,且AD∥HE.若∠A=60°,且AB=7,DE=4,HE=5,则梯形HEDI的面积为
8
3
8
3

查看答案和解析>>

科目:初中数学 来源:2011年台湾省第二次中考数学试卷(解析版) 题型:选择题

如图为菱形ABCD与正方形EFGH的重迭情形,其中E在CD上,AD与GH相交于I点,且AD∥HE.若∠A=60°,且AB=7,DE=4,HE=5,则梯形HEDI的面积为何?( )

A.6
B.8
C.10-2
D.10+2

查看答案和解析>>

科目:初中数学 来源:2011年台湾省第二次中考数学试卷(解析版) 题型:选择题

如图为菱形ABCD与△ABE的重迭情形,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为何?( )

A.8
B.9
C.11
D.12

查看答案和解析>>

同步练习册答案