精英家教网 > 初中数学 > 题目详情
已知抛物线y=ax2+bx+c的图象交x轴于点A(x0,0)和点B(2,0),与y轴的正半轴交于点C,其对称轴是直线x=-1,tan∠BAC=2,点A关于y轴的对称点为点D.
(1)确定A、C、D三点的坐标;
(2)求过B、C、D三点的抛物线的解析式;
(3)若过点(0,3)且平行于x轴的直线与(2)小题中所求抛物线交于M、N两点,以MN为一边,抛物线上任意一点P(x,y)为顶点作平行四边形,若平行四边形的面积为S,写出S关于P点纵坐标y的函数解析式;
(4)当
12
<x<4时,(3)小题中平行四边形的面积是否有最大值?若有,请求出;若无,请说明理由.
分析:(1)因为已知B点坐标和对称轴,所以可根据对称轴公式求出A点坐标;根据锐角三角函数的定义可求出C点坐标,根据x轴上的点关于y轴对称的特点可求出D点坐标.
(2)因为B、D两点为抛物线与x轴的交点,所以可设出二次函数的交点式,再用待定系数法求出函数的解析式.
(3)根据过点(0,3)且平行于x轴的直线与(2)中的抛物线相交于M.N,可求出M、N的坐标,及两点之间的距离,再根据抛物线的顶点坐标求出P点纵坐标y的取值范围,根据其取值范围即可求出S与y之间的函数关系式.
(4)因为MN之间的距离为定值,故只要在
1
2
<x<4范围内|y|最大,则平行四边形的面积最大.根据(3)中S与y之间的函数关系式即可求出S的最大值.
解答:精英家教网解:(1)∵点A与点B关于直线x=-1对称,点B的坐标是(2,0)
∴点A的横坐标是
x0+2
2
=-1,x0=-4,
故点A的坐标是(-4,0)
∵tan∠BAC=2即
OC
|OA|
=2,可得OC=8
∴C(0,8)
∵点A关于y轴的对称点为D
∴点D的坐标是(4,0);

(2)设过三点的抛物线解析式为y=a(x-2)(x-4),
代入点C(0,8),解得a=1.
∴抛物线的解析式是y=x2-6x+8;

(3)∵抛物线y=x2-6x+8与过点(0,3)平行于x轴的直线相交于M点和N点
∴M(1,3),N(5,3),
而抛物线的顶点为(3,-1),精英家教网
当y>3时,
S=4(y-3)=4y-12,
当-1≤y<3时,
S=4(3-y)=-4y+12;

(4)以MN为一边,P(x,y)为顶点,且当<x<4的平行四边形面积最大,只要点P到MN的距离h最大
∴当x=3,y=-1时,h=4,
S=4h=4×4=16,
∴满足条件的平行四边形面积有最大值16.
点评:此题比较复杂,阅读量较大,把动点问题与二次函数的性质相结合,有一定的综合性,但难度适中,是一道较好的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2和直线y=kx的交点是P(-1,2),则a=
 
,k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案