精英家教网 > 初中数学 > 题目详情
精英家教网如图,Rt△ABC中,AC=5,BC=12,分别以它的三边为直径向上作三个半圆,求阴影部分面积.
分析:先求出直角三角形的斜边,再利用:阴影部分面积=两个小半圆面积+直角三角形面积-以斜边为直径的大半圆面积.
解答:解:在Rt△ABC中,AC=5,BC=12,
AB=
AC2+BC2
=
52+122
=13,
S阴影=
1
2
π(
5
2
2+
1
2
π(
12
2
2+
1
2
×5×12-
1
2
π(
13
2
2=30.
点评:找出阴影部分面积的表示非常重要,另外本题也进一步验证了勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC点边上一点,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的长(2)求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,则CD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半径;
(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的长.

查看答案和解析>>

同步练习册答案