精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.

(1)当∠BQD=30°时,求AP的长;
(2)证明:在运动过程中,点D是线段PQ的中点;
(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.

【答案】
(1)

解:设AP=x,则BQ=x,

∵∠BQD=30°,∠C=60°,

∴∠QPC=90°,

∴QC=2PC,即x+6=2(6﹣x),

解得x=2,

即AP=2


(2)

证明:如图,

过P点作PF∥BC,交AB于F,

∵PF∥BC,

∴∠PFA=∠FPA=∠A=60°,

∴PF=AP=AF,

∴PF=BQ,

又∵∠BDQ=∠PDF,∠DBQ=∠DFP,

∴△DQB≌△DPF,

∴DQ=DP即D为PQ中点


(3)

运动过程中线段ED的长不发生变化,是定值为3,

理由:∵PF=AP=AF,PE⊥AF,

又∵△DQB≌△DPF,


【解析】(1)先判断出∠QPC是直角,再利用含30°的直角三角形的性质得出QC=2PC,建立方程求解决即可;(2)先作出PF∥BC得出∠PFA=∠FPA=∠A=60°,进而判断出△DQB≌△DPF得出DQ=DP即可得出结论;(3)利用等边三角形的性质得出EF= AF,借助DF=DB,即可得出DF= BF,最后用等量代换即可.
【考点精析】掌握等边三角形的性质是解答本题的根本,需要知道等边三角形的三个角都相等并且每个角都是60°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC中,∠A=90°,BD是∠ABC的平分线,DE是BC的垂直平分线,则∠C=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列语句中,正确的是( )

①三个点确定一个圆;②同弧或等弧所对的圆周角相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接平行四边形一定是矩形。

A.①②B.②③C.②④D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面事件是随机事件的是(  )

A.掷一枚硬币,出现反面

B.在标准大气压下,水加热到8℃时会沸腾

C.实数的绝对值不小于零

D.如果ab是实数,那么abba

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若单项式﹣3xnym与单项式4x4nyn1是同类项,则m+n的值是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠ABC=90°,∠EBE′=90°,AB=BC,BE=BE′,若AE=1,BE=2,∠BE′C=135°,求EC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了AB两种型号的空气净化器,两种净化器的销售相关信息见下表:

A型销售数量(台)

B型销售数量(台)

总利润(元)

5

10

2 000

10

5

2 500

(1)每台A型空气净化器和B型空气净化器的销售利润分别是多少?

2)该公司计划一次购进两种型号的空气净化器共100台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该公司销售完这100台空气净化器后的总利润最大,请你设计相应的进货方案;

3)已知A型空气净化器的净化能力为300 m3/小时,B型空气净化器的净化能力为200 m3/小时.某长方体室内活动场地的总面积为200 m,室内墙高3 m.该场地负责人计划购买5台空气净化器每天花费30分钟将室内空气净化一新,如不考虑空气对流等因素,至少要购买A型空气净化器多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,梯形ABCD中,AD∥BC,P是AB的中点,过P点作AD的平行线交DC于Q点.
(1)PQ与BC平行吗?为什么?
(2)测DQ与CQ的长,是否相等?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校七年级四个班级的学生义务为校植树.一班植树x棵,二班植树的棵树比一班的2倍少40棵,三班植树的棵数比二班的一半多30棵,四班植树的棵数比三班的一半多20棵.
(1)求四个班共植树多少棵?(用含x的式子表示)
(2)若三班和四班植树一样多,那么植树最多的班级比植树最少的班级多植树多少棵?

查看答案和解析>>

同步练习册答案