精英家教网 > 初中数学 > 题目详情
精英家教网直角梯形ABCD中,AD∥BC,∠A=90°,AD=1,BC=
5
,点E是一腰CD的中点,BE的延长线与AD的延长线相交于点F.
(1)求证:DF=CB;
(2)连接BD、CF,当AB=
 
时,四边形BCFD是菱形?请说明理由.
分析:(1)根据平行线的性质得出∠DFE=∠CBE,根据AAS推出△DFE≌△CBE即可;
(2)根据平行四边形的判定得出平行四边形,根据勾股定理求出BD=BC即可.
解答:(1)证明:∵AD∥BC,
∴∠DFE=∠CBE,
又∵∠DEF=∠CEB,DE=CE,
∴△DFE≌△CBE(AAS),
∴DF=CB.

(2)解:当AB=2时,四边形BCFD是菱形,
理由如下:由(1)知:DF=BC,DF∥BC,
∴四边形BCFD是平行四边形,
∵∠A=90°,AD=1,
∴当AB=2时,BD=
22+12
=
5
=BC,
∴?BCFD是菱形.
故答案为:2.
点评:本题主要考查对直角梯形的性质,平行线的性质,勾股定理,菱形的判定,平行四边形的判定等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网在直角梯形ABCD中,底AD=6cm,BC=11cm,腰CD=12cm,则这个直角梯形的周长为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直角梯形ABCD中,AD∥BC,∠B=90°,AD=1,BC=8,AB=6,点P在高AB上滑动,当AP长为
 
时,△DAP与△PBC相似.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角梯形ABCD中,AD∥BC,∠A=∠B=90°,E是AB的中点,连接DE、CE,AD+BC=CD,以精英家教网下结论:
(1)∠CED=90°;
(2)DE平分∠ADC;
(3)以AB为直径的圆与CD相切;
(4)以CD为直径的圆与AB相切;
(5)△CDE的面积等于梯形ABCD面积的一半.
其中正确结论的个数为(  )
A、2个B、3个C、4个D、5个

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作精英家教网EF∥AB,交AD于点E,CF=4cm.
(1)求证:四边形ABFE是等腰梯形;
(2)求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

7、在直角梯形ABCD中,底AD=6,BC=11,腰CD=13,则周长=
42

查看答案和解析>>

同步练习册答案