【题目】在Rt△ACB中,∠C=90°,AC=BC,一直角三角板的直角顶角O在AB边的中点上,这块三角板绕O点旋转,两条直角边始终与AC、BC边分别相交于E、F,连接EF,则在运动过程中,△OEF与△ABC的关系是( )
A. 一定相似 B. 当E是AC中点时相似
C. 不一定相似 D. 无法判断
科目:初中数学 来源: 题型:
【题目】如图(1),AB∥CD,猜想∠BPD与∠B.∠D的关系,说明理由.(提示:三角形的内角和等于180°)
①填空或填写理由
解:猜想∠BPD+∠B+∠D=360°
理由:过点P作EF∥AB,
∴∠B+∠BPE=180°______
∵AB∥CD,EF∥AB,
∴______∥_____,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)
∴∠EPD+______=180°
∴∠B+∠BPE+∠EPD+∠D=360°
∴∠B+∠BPD+∠D=360°
②依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B.∠D的关系,并说明理由.
③观察图(3)和(4),已知AB∥CD,直接写出图中的∠BPD与∠B.∠D的关系,不说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O半径为1,AB是⊙O的直径,C是⊙O上一点,连接AC,⊙O外的一点D 在直线AB上.
(1)若AC=,OB=BD.
①求证:CD是⊙O的切线.
②阴影部分的面积是 .(结果保留π)
(2)当点C在⊙O上运动时,若CD是⊙O的切线,探究∠CDO与∠OAC的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场在黄金周促销期间规定:商场内所有商品按标价的打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:
说明:表示在范围中,可以取到a,不能取到b.
根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠.
例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:元,实际付款420元.
购买商品得到的优惠率,
请问:
购买一件标价为500元的商品,顾客的实际付款是多少元?
购买一件商品,实际付款375元,那么它的标价为多少元?
请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,AB=AC=4,∠ABC=67.5°,△ABD和△ABC关于AB所在的直线对称,点M为边AC上的一个动点(重合),点M关于AB所在直线的对称点为N,△CMN的面积为S.
(1)求∠CAD的度数;
(2)设CM=x,求S与x的函数表达式,并求x为何值时S的值最大?
(3)S的值最大时,过点C作EC⊥AC交AB的延长线于点E,连接EN(如图2),P为线段EN上一点,Q为平面内一点,当以M,N,P,Q为顶点的四边形是菱形时,请直接写出所有满足条件NP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
根据绝对值的定义,|x| 表示数轴上表示数x的点与原点的距离,那么,如果数轴上两点P、Q表示的数为x1,x2时,点P与点Q之间的距离为PQ=|x1-x2|.
根据上述材料,解决下列问题:
如图,在数轴上,点A、B表示的数分别是-4, 8(A、B两点的距离用AB表示),点M、N是数轴上两个动点,分别表示数m、n.
(1)AB=_____个单位长度;若点M在A、B之间,则|m+4|+|m-8|=______;
(2)若|m+4|+|m-8|=20,求m的值;
(3)若点M、点N既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线:与直线:相交于点,直线、分别交轴于、两点,矩形的顶点、分别在、上,顶点、都在轴上,且点与点重合,那么 __________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形ABCD中如图,∠A=∠B=90°,将△AED、△DCF分别沿着DE、DF翻折,点A、C都分别与EF上的点G重合.
(1)求证:四边形ABCD是正方形;(2)若AB=6,点F是BC的中点,求AE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com