分析 感知:想办法证明△BCE≌△DCG即可解决问题;
探究:结论成立.证明方法类似;
应用:由四边形ABCD是菱形,S△EBC=8,推出S△AEB+S△EDC=8,由AE=3DE,推出S△AEB=3S△EDC,可得S△EDC=6,S△EDC=2,由△BCE≌△DCG,推出S△DGC=S△EBC=8,根据菱形CEFG的面积=2•S△EGC即可解决问题;
解答 感知:证明:∵四边形ABCD、四边形CEFG均为正方形,
∴BC=CD,CE=CG,
∵∠BCD=∠ECG=90°,
∴∠BCD-∠ECD=∠ECG-∠ECD,
即∠BCE=∠DCG,
在△BCE和△DCG中,
$\left\{\begin{array}{l}{CB=CD}\\{∠BCE=∠DCG}\\{CE=CG}\end{array}\right.$,
∴△BCE≌△DCG,
∴BE=DG.
探究:∵四边形ABCD、四边形CEFG均为菱形,
∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F,
∵∠A=∠F,
∴∠BCD=∠ECG,
∴∠BCD-∠ECD=∠ECG-∠ECD,
即∠BCE=∠DCG,
∴△BCE≌△DCG.,
∴BE=DG.
应用:∵四边形ABCD是菱形,S△EBC=8,
∴S△AEB+S△EDC=8,
∵AE=3DE,
∴S△AEB=3S△EDC,
∴S△EDC=6,S△EDC=2,
∵△BCE≌△DCG,
∴S△DGC=S△EBC=8,
∴S△ECG=8+2=10,
∴菱形CEFG的面积=2•S△EGC=20,
故答案为20.
点评 本题考查正方形的性质、菱形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用全等三角形的性质解决问题,灵活运用条件解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 6.4米 | B. | 7.2米 | C. | 8米 | D. | 9.6米 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ![]() | B. | ![]() | C. | ![]() | D. | ![]() |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com