精英家教网 > 初中数学 > 题目详情
7.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=(  )
A.118°B.119°C.120°D.121°

分析 由三角形内角和定理得∠ABC+∠ACB=120°,由角平分线的性质得∠CBE+∠BCD=60°,再利用三角形的内角和定理得结果.

解答 解:∵∠A=60°,
∴∠ABC+∠ACB=120°,
∵BE,CD是∠B、∠C的平分线,
∴∠CBE=$\frac{1}{2}$∠ABC,∠BCD=$\frac{1}{2}∠BCA$,
∴∠CBE+∠BCD=$\frac{1}{2}$(∠ABC+∠BCA)=60°,
∴∠BFC=180°-60°=120°,
故选:C.

点评 本题主要考查了三角形内角和定理和角平分线的性质,综合运用三角形内角和定理和角平分线的性质是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.下列各式计算不正确的是(  )
A.-(-3)=3B.(3x)3=9x3C.$\sqrt{4}$=2D.2-1=$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在平面直角坐标系中,抛物线y=mx2-8mx+4m+2(m>0)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2-x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.
(1)求抛物线的解析式;
(2)当0<t≤8时,求△APC面积的最大值;
(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为(  )
A.6B.6$\sqrt{3}$C.9D.3$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,折叠矩形OABC的一边BC,使点C落在OA边的点D处,已知折痕BE=5$\sqrt{5}$,且$\frac{OD}{OE}$=$\frac{4}{3}$,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:y=-$\frac{1}{16}$x2+$\frac{1}{2}$x+c经过点E,且与AB边相交于点F.
(1)求证:△ABD∽△ODE;
(2)若M是BE的中点,连接MF,求证:MF⊥BD;
(3)P是线段BC上一点,点Q在抛物线l上,且始终满足PD⊥DQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在边长为2的正方形ABCD中,G是AD延长线上的一点,且DG=AD,动点M从A点出发,以每秒1个单位的速度沿着A→C→G的路线向G点匀速运动(M不与A,G重合),设运动时间为t秒,连接BM并延长AG于N.
(1)是否存在点M,使△ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由;
(2)当点N在AD边上时,若BN⊥HN,NH交∠CDG的平分线于H,求证:BN=HN;
(3)过点M分别作AB,AD的垂线,垂足分别为E,F,矩形AEMF与△ACG重叠部分的面积为S,求S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=2,则线段ON的长为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.1D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,已知点A在反比例函数y=$\frac{k}{x}$(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k=16.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.阅读与计算:请阅读以下材料,并完成相应的任务.
斐波那契(约1170-1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.
斐波那契数列中的第n个数可以用$\frac{1}{\sqrt{5}}$[$(\frac{1+\sqrt{5}}{2})^{n}$-$(\frac{1-\sqrt{5}}{2})^{n}$]表示(其中,n≥1).这是用无理数表示有理数的一个范例.
任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.

查看答案和解析>>

同步练习册答案