精英家教网 > 初中数学 > 题目详情
若二次函数(m为常数)的图象经过原点,则m=          
2

试题分析:由题意把原点坐标(0,0)代入二次函数,即可求得结果.
由题意得,解得
点评:本题属于基础应用题,只需学生熟练掌握函数图象上的点的坐标的特征,即可完成.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知,如图,A,B分别在x轴和y轴上,且OA=2OB,直线y1=kx+b经过A点与抛物线y2=-x2+2x+3交于B,C两点,
(1)试求k,b的值及C点坐标;
(2)x取何值时y1,y2均随x的增大而增大;
(3)x取何值时y1>y2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的销售和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图1);一件商品的成本Q(元)与时间t(月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图2).
(1)  一件商品在3月份出售时的利润是多少元?(利润=售价-成本)
(2)求图2中表示一件商品的成本Q(元)与时间t(月)之间的函数关系式;
(3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30 000件,请你计算一下该公司在一个月内最少获利多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).

①求抛物线的解析式及顶点D的坐标;
②判断△ABC的形状,证明你的结论;
③点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题8分)某商场销售某种品牌的纯牛奶,已知进价为每箱40元,市场调查发现,若每箱以50元销售,平均每天可销售90箱,价格每降低1元,平均每天多售3箱,价格每升高1元,平均每天少售3箱。
①写出平均每天的销售量y与每箱售价之间关系;
②求出商场平均每天销售这种牛奶的利润w与每箱售价之间的关系;
③求在?的情况下当牛奶每箱售价定为多少时可达到最大利润,最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线的顶点坐标是(      )
A.(-1,-2)B.(-1,2)C.(1,-2)D.(1,2)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象如图,若一元二次方程
有实数根,则以下关于的结论正确的是(  )
A.m的最大值为2 B.m的最小值为-2
C.m是负数  D.m是非负数

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,梯形中,.动点从点出发,以每秒个单位长度的速度在线段上运动;动点同时从点出发,以每秒个单位长度的速度在线段上运动.以为边作等边△,与梯形在线段的同侧.设点运动时间为,当点到达点时,运动结束.

(1)当等边△的边恰好经过点时,求运动时间的值;
(2)在整个运动过程中,设等边△与梯形的重合部分面积为,请直接写
之间的函数关系式和相应的自变量的取值范围;
(3)如图,当点到达点时,将等边△绕点旋转(),
直线分别与直线、直线交于点.是否存在这样的,使△为等腰三角形?
若存在,请求出此时线段的长度;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知函数 与的图象交于点,点的纵坐标为1,则关于的方程的解为_____________.

查看答案和解析>>

同步练习册答案