精英家教网 > 初中数学 > 题目详情

已知△ABC中,∠BAC=90°,AB=AC.如图,D为AC上任一点,连接BD,过A点作BD的垂线交过C点与AB平行的直线CE于点E.
求证:BD=AE.

证明:∵AB∥EC,∠BAC=90°,
∴∠ACE=90°=∠BAD,
∵AF⊥BD,
∴∠AFB=90°=∠BAD,
∴∠ABD+∠BAF=90°,∠BAF+∠DAF=90°,
∴∠BAD=∠CAE,
在△ADB和△CAE中,

∴△ADB≌△CAE(ASA),
∴BD=AE.
分析:根据平行线性质求出∠ACE=∠BAD,根据三角形的内角和定理求出∠ABD=∠CAE,根据ASA证出△ADB≌△CAE即可.
点评:本题考查了全等三角形的性质和判定,三角形的内角和定理,垂直定义等知识点,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知△ABC中,∠ACB=90°,AC=BC,P、Q分别是边AB、BC上的动点,且点P不与点A、B重合,点Q不与点B、C重合.
(1)在以下五个结论中:①∠CQP=45°;②PQ=AC;③以A、P、C为顶点的三角形全等于△PQB;④以A、P、C为顶点的三角形全等于△CPQ;⑤以A、P、C为顶点的三角形相似于△CPQ.一定不成立的是
 
.(只需将结论的代号填入题中的模线上).
(2)设AC=BC=1,当CQ的长取不同的值时,△CPQ是否可能为直角三角形?若可能,请说明所有的精英家教网情况;若不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知△ABC中,DE∥BC,EF∥AB,AB=3,BC=6,AD:DB=2:1,则四边形DBFE的周长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知△ABC中,AB=AC,以AB为直径作⊙O交BC于D,交AC于E,过D作DF⊥AC于F
(1)求证:DF是⊙O的切线;
(2)连接DE,且AB=4,若∠FDC=30°,试求△CDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC中,AB=3,AC=5,第三边BC的长为一元二次方程x2-9x+20=0的一个根,则该三角形为
等腰或直角
等腰或直角
三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,AB垂直平分线交AC于D,连接BE,若∠A=40°,则∠EBC=(  )

查看答案和解析>>

同步练习册答案